• Title/Summary/Keyword: Multiple antenna

Search Result 684, Processing Time 0.026 seconds

Analysis on the Performance Degradation of MIMO-OFDM Receiver and Hybrid Interference Cancellation with Low Complexity for the Performance Improvement Under High-Mobility Condition (MIMO-OFDM 수신기의 성능 열화 분석 및 고속 이동환경에서의 성능 향상을 위한 저복잡도 HIC 간섭제거 기법)

  • Kang, Seung-Won;Kim, Kyoo-Hyun;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.95-112
    • /
    • 2007
  • Spatial Multiplexing techniques, which is a kind of Multiple antenna techniques, provide high data transmission rate by transmitting independent data at different transmit antenna with the same spectral resource. OFDM (Orthogonal Frequency Division Multiplexing) is applied to MIMO (Multiple-Input Multiple-Output) system to combat ISI (Inter-Symbol Interference) and frequency selective fading channel, which degrade MIMO system performance. But, orthogonality between subcarriers of OFDM can't be guaranteed under high-mobility condition. As a result, severe performance degradation due to ICI is induced. In this paper, both ICI and CAI (Co-Antenna Interference) which occurs due to correlation between multiple antennas, and performance degradation due to both ICI and CAI are analyzed. In addition to the proposed CIR (Channel Impulse Response) estimation method for avoiding loss in data transmission rate, HIC (Hybrid Interference Cancellation) approach for guaranteeing QoS of MIMO-OFDM receiver is proposed. We observe the results on analytical performance degradation due to both ICI & CAI are coincide with the simulation results and performance improvement due to HIC are also verified by simulation under SCM-E Sub-urban Macro MIMO channel.

Unified Optimal Power Allocation Strategy for MIMO Candidates in 3GPP HSDPA

  • Kim, Sung-Jin James;Kim, Ho-Jin;Lee, Kwang-Bok
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.768-776
    • /
    • 2005
  • We compare the achievable throughput of time division multiple access (TDMA) multiple-input multiple-output (MIMO) schemes illustrated in the 3rd Generation Partnership Project (3GPP) MIMO technical report, versus the sum-rate capacity of space-time multiple access (STMA). These schemes have been proposed to improve the 3GPP high speed downlink packet access (HSDPA) channel by employing multiple antennas at both the base station and mobile stations. Our comparisons are performed in multi-user environments and are conducted using TDMA such as Qualcomm's High Data Rate and HSDPA, which is a simpler technique than STMA. Furthermore, we present the unified optimal power allocation strategy for HSDPA MIMO schemes by exploiting the similarity of multiple antenna systems and multi-user channel problems.

  • PDF

Path Loss Model with Multiple-Antenna (다중 안테나를 고려한 경로 손실 모델)

  • Lee, Jun-Hyun;Lee, Dong-Hyung;Keum, Hong-Sik;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.747-756
    • /
    • 2014
  • In this paper, we propose a path loss model with the multiple antennas using diversity effect. Currently wireless communication systems use the multiple antennas in order to improve the channel capacity or diversity gain. However, until recently, many researches on path loss model only consider geographical environment between the transmitter and the receiver. There is no study about path loss model considering diversity effect. Nowaday wireless communication use the multiple antennas and we in common find examples using diversity scheme that is method in order to enhance a channel capacity. Moreover we anticipate that it work harder in future researches. But in this communication system, path loss model isn't established that predict strength of received signal. So, in order to predict strength of received signal, we take changing SNR by diversity gain. When exceeding the number of antennas of receiver are 7 in proposed model, diversity effect is saturated. Therefore we consider the number of antenna of receiver until 10. We find RMSE between proposed model and value of calculation is 1. We calculate the diversity gain by conventional BER curve. Proposed model can predict loss of received signal in system using multiple antennas.

Beam Curve Optimization for Minimizing the Phase Errors of Rotman Lens (Rotman 렌즈의 위상 오차 최소화를 위한 빔 곡선 최적화)

  • Park, Joo-Rae;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.864-871
    • /
    • 2014
  • In this paper, we propose an optimization method for obtaining beam curve which minimize the phase errors of Rotman lens. This method is based on idea that 3 path lengths from a beam port through equal phase points, which consist of the center point of array antenna and two points placed symmetrically or asymmetrically along array antenna, to the corresponding phase front are equal. According to this method, the optimal locations of beam ports can be obtained directly by finding each equal phase point set on array antenna to minimize the phase errors for each beam direction. Simulation results show that the proposed method is the most optimal and effective method for determining the beam curve of Rotman lens with low phase errors.

Double-Layered Frequency Selective Surface Superstrate Using Ring Slot and Dipole-Shaped Unit Cell Structure

  • Lee, Hong-Min;Kim, Yong-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.86-91
    • /
    • 2010
  • In this paper, a double-layered frequency selective surface(FSS) superstrate was built and tested. The unit cell of the proposed FSS consists of a ring slot and a dipole-shaped structure and shows a complementary frequency response. Each unit cell is printed on two sides of a substrate. By using these double-layered structures, the first resonant frequency of the pass-band can be lowered. As a result, the size of the unit cell is minimized and the spacing between the other cells is reduced. The proposed FSS-dipole composite antenna is designed for the gain enhancement of wide-band code division multiple access(WCDMA) frequency bands(1.92~2.17 GHz) with a low quality factor(Q=0.17). To verify the gain enhancement performance of the FSS, an FSS-dipole composite antenna was created. Although the FSS layer enhances the gain of the primary radiation source of the dipole antenna, the FSS-dipole complex antenna cannot show a uniform gain over the entire desired frequency band. The experimental results show a gain enhancement of 3 dBi with an FSS superstrate in the WCDMA frequency band.

Downlink Performance of Distributed Antenna Systems in MIMO Composite Fading Channel

  • Xu, Weiye;Wang, Qingyun;Wang, Ying;Wu, Binbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3342-3360
    • /
    • 2014
  • In this paper, the capacity and BER performance of downlink distributed antenna systems (DAS) with transmit antenna selection and multiple receive antennas are investigated in MIMO composite channel, where path loss, Rayleigh fading and lognormal shadowing are all considered. Based on the performance analysis, using the probability density function (PDF) of the effective SNR and numerical integrations, tightly-approximate closed-form expressions of ergodic capacity and average BER of DAS are derived, respectively. These expressions have more accuracy than the existing expressions, and can match the simulation well. Besides, the outage capacity of DAS is also analyzed, and a tightly-approximate closed-form expression of outage capacity probability is derived. Moreover, a practical iterative algorithm based on Newton's method for finding the outage capacity is proposed. To avoid iterative calculation, another approximate closed-form outage capacity is also derived by utilizing the Gaussian distribution approximation. With these theoretical expressions, the downlink capacity and BER performance of DAS can be effectively evaluated. Simulation results show that the theoretical analysis is valid, and consistent with the corresponding simulation.

Design of Metamaterial-Inspired FSS Sub-Reflector for a Dual-Band Offset Cassegrain Reflector Antenna (이중대역 오프셋 카세그레인 반사판 안테나용 메타재질구조 모사 주파수 선택표면 부반사판 설계)

  • Kim, Hyeonsu;Kahng, Sungtek;Khattak, M. Kamran;Jeon, Jinsu;Park, Jeong-hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.34-39
    • /
    • 2015
  • In this paper, a design of an offset Cassegrain antenna is proposed for Ku and Ka dual-band without increasing the antenna size. For Efficiency of computation and implementation, the frequency selectivity surface (FSS) of reflecting the Ka-band signal and passing the Ku-band is provided for the sub-reflector instead of the main reflector. The proposed FSS hyperboloid sub-reflector is the periodic structure of a unit cell comprising octagon metal rings embedded in the multiple layers. The proposed design is verified for 19 GHz and 45 GHz bands by the use of precise electromagneitc-field simulations.

Wideband Dual-polarized Microstrip Antenna with H-shaped Coupling Slot (H-커플링 슬롯 광대역 이중편파 마이크로스트립 안테나)

  • Kim, Jang Wook;Jeon, Joo Seong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.4
    • /
    • pp.71-79
    • /
    • 2014
  • This paper investigates wideband dual-polarized microstrip antenna with H-shaped coupling slot. These types of antennas are used to prevent deterioration of transmission quality caused by terminal interference or multipath fading, which usually occur when many terminals are used in limited space such as hot-spot zones. The experimental results show that the impedance bandwidth ($SWR{\leq}2$) of 33.98% and the peak gain of 8.58 dBi (at 2.11 GHz) were obtained by the frequency band under 2.7 GHz. The proposed antenna is designed originally for multiple service bands with simple structure and easily be mass-produced for various commercial applications.

An Intercell Interference Cancellation Method for OFDM-based Cellular Systems Using a Virtual Smart Antenna (OFDM 기반의 셀룰러 시스템에서 가상 스마트 안테나를 이용한 셀 간 간섭 제거 기법)

  • Park Kyung-won;Lee Kyu-in;Ahn Jae-young;Cho Yong-soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12A
    • /
    • pp.1161-1167
    • /
    • 2005
  • In this Paper, a concept of virtual smart antenna (SA) is introduced for orthogonal Sequency division multiplexing (OFDM)-based cellular systems with a frequency reuse factor equal to 1. The OFDM-based cellular system is robust to multipath channels but has a disadvantage that the intercell interference (ICI) caused by adjacent base stations is large at the edge of a cell. In this paper, after deriving the symbol timing offset estimation scheme for the OFDM signal received from multiple base stations in a quasi-static fading channel, the ICI cancellation method based on virtual smart antenna is proposed using the steering vector formed by the symbol timing offset of the desired signal and interference signals.

Efficient Selection Methods of Transmit-Receive Antennas Based on Channel Capacity For MIMO Systems (MIMO 시스템을 위한 채널 용량에 기반을 둔 송수신 안테나의 효율적인 선택 기법)

  • Kim, Hyo-Shil;Kim, Ryun-Woo;Kim, Jong-Deuk;Byun, Youn-Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1092-1099
    • /
    • 2006
  • Future wireless communication systems will employ spatial multiplexing with multiple antennas at both transmitter and receiver to take advantage of larger capacity gains as compared to the systems that use a single antenna. However, in order to reduce higher hardware costs and computational burden, it will require an efficient transmit-receive antenna selection algorithm, which we propose in this paper. Through simulation and comparative analysis of various existing methods and the one we propose in this paper, the algorithm we propose was validated as nearer to the optimal selection technique than existing nearly optimal antenna selection schemes.