본 연구는 유역의 지형인자를 고려한 강우의 수리학적 단기유출 해석 시스템을 개발한 것이다. 강우 유출의 기본 개념은 Kinematic Wave 이론에 의거하였으며, 그 수치해는 특성곡선 추적법에 의하여 산출된다. 개발된 강우유출해석 시스템은 한개의 하도를 중심으로 좌우 2개의 등가사면을 지니는 단위 등가조도 모델이 복수개의 하도망을 따라 결합된 복합 등가조도 유역 모델로 구성되며, 등가조도유역 모델은 유역의 하천차수이론에 근거하여 규정됨으로써 유역이 지니는 확률적 지형인자를 모델 파라메타에 함축시키는 특성을 지닌다. 모델 파라메타의 민감도분석과 IHP 대표유역인 보청천 유역의 지형 및 수문자료를 이용한 모델 보정과 검정을 통하여 제안 시스템의 현장 적용성과 재현가능성이 확인되었다. 본 연구의 성과에 의하여 해석대상 등가유역의 시공간상 임의 위치에서 수리량의 시간변동 예측 및 유역의 개발에 따른 단기적 수질변동 해석에 요구되는 수리량의 해석이 가능하게 되었다.
비디오 스트림은 다차원 공간에서 데이터 포인트의 시퀀스로 표현될 수 있다. 본 논문에서는 시퀀스 내의 데이터 포인트들의 값들의 근사치에 대한 정보와 시퀀스 내의 포인트들의 방향성에 대한 정보를 내포하고 있는 트랜드 벡터(trend vector)에 대한 소개와 이 벡터를 이용하여 데이터 시퀀스를 위한 유사 패턴 검색 기법을 제안한다. 시퀀스는 복수 개의 세그먼트로 분할되며 각 세그먼트는 트랜드 벡터로 표현된다. 질의처리는 시퀀스 내의 각각의 포인트들에 대하여 수행되는 대신, 트랜드 벡터들에 대하여 처리된다. 제안한 기법은 이 벡터를 사용하여 질의와 무관한 데이터 시퀀스들을 데이터베이스로부터 여과하고 질의 시퀀스와 유사한 시퀀스들을 검색하도록 설계되었다. 제안한 기법을 검증하기 위하여 비디오 스트림과 가상으로 생성된 데이터에 관하여 실험을 수행하였으며, 실험 결과 제안한 기법의 정밀도(precision)는 기존의 방법에 비하여 2.1배까지 향상되었으며 처리시간은 45%까지 감소되었음을 보여주고 있다.
본 논문에서는 시변 다중 입출력 (multiple-input multiple-output) 방송(broadcast) 채널에서 피드백 양자화와 지연을 고려한 협력 빔형성 (coordinated beamforming: CBF) 시스템을 제안한다. 다중 데이터 스트림을 전송하는 CBF 시스템에 피드백 양자화 기법을 적용하고, 구현 복잡도와 피드백 오버헤드 측면에서 효율적인 CBF 시스템을 제시한다. 또한, 실제적인 무선통신 환경에서 발생하는 피드백 지연에 의한 오류를 최소화하기 위하여 사용자 단말에 선형 채널 예측기를 적용한다. 선형 예측기로 Wiener 필터를 이용하여 피드백 지연시간 후의 미래 채널을 예측하교 이를 토대로 피드백 정보를 생성함으로써 지연된 피드백 정보를 이용하는 CBF 시스템의 성능을 향상시킨다. 모의실험을 통해 다양한 도플러 (Doppler) 주파수의 MIMO 방송 채널에서 양자화와 Wiener 필터를 적용한 CBF 시스템의 향상된 심볼 오율과 합 전송률 성능을 확인한다.
최근 하천범람에 따른 피해를 최소화하기 위해서는 대피를 위한 선행시간을 확보하는 것이 매우 중요하다. 본 연구에서는 현재 하천에서 측정되고 있는 수위 관측 자료를 이용하여 이상호우 발생시 하류의 수위를 예측하였다. 수위 예측을 위해 다중회귀모형 및 인공신경망 모형을 섬강시험유역에 적용하였다. 다중회귀모형 및 인공신경망 모형의 학습에는 섬강시험유역의 2002년부터 2010년까지의 수위 관측 자료를 이용하였으며, 학습된 모형을 이용하여 발생 가능한 수위를 예측하였다. 모의 결과 인공신경망 수위예측모형의 결정계수는 0.991 - 0.999로 나타났으며, 다중회귀수위예측 모형의 결정계수는 0.945 - 0.990로 나타나 인공신경망을 이용한 수위예측모형이 다중회귀모형보다 좀 더 나은 예측 결과를 나타내는 것을 확인할 수 있었다. 본 연구결과는 향후 하천에서 선행시간을 확보한 홍수 예보 구축에 활용할 수 있을 것으로 판단된다.
In this paper, we present a new approach for speaker diarization. First, we use the prosodic information calculated on the original speech to resynthesize the new speech data utilizing the spectrum modeling technique. The resynthesized data is modeled with sinusoids based on pitch, vibration amplitude, and phase bias. Then, we use the resynthesized speech data to extract cepstral features and integrate them with the cepstral features from original speech for speaker diarization. At last, we show how the two streams of cepstral features can be combined to improve the robustness of speaker diarization. Experiments carried out on the standardized datasets (the US National Institute of Standards and Technology Rich Transcription 04-S multiple distant microphone conditions) show a significant improvement in diarization error rate compared to the system based on only the feature stream from original speech.
For the effective management of medical images, it becomes popular to use computing machines in medical practice, namely PACS. However, the amount of image data is so large that there is a lack of storage space. We usually use data compression techniques to save storage, but the process speed of machines is not fast enough to meet surgical requirement. So a special hardware system processing medical images faster is more important than ever. To meet the demand for high speed image processing, especially image compression and decompression, we designed and implemented the medical image CODEC (COder/DECoder) based on MISD (Multiple Instruction Single Data stream) architecture to adopt parallelism in it. Considering not being a standard scheme of medical image compression/decompression, the CODEC is designed programable and general. In this paper, we use JPEG (Joint Photographic Experts Group) algorithm to process images and evalutate the CODEC.
Purpose: This research is motivated by the rise of live-streaming commerce in service industries, aiming to explore factors affecting service product purchases in live-streaming commerce. Extracted independent factors include information provision, vicarious experience, social interaction, visibility, and emotional transmission. Additionally, this study aims to discern the moderating effect of brand reputation in the relationships between independent factors and customer intention to purchase service products in live-streaming commerce. Research design, data and methodology: This study employed a questionnaire survey to collect data and analyzed collected data with statistical analysis methods, including exploratory factor analysis and multiple regression analysis. Results: The analysis results say three factors significantly influenced purchase intentions in live-streaming commerce: information provision, emotional transmission, and price discount. Brand reputation also significantly affects customers' intention to buy service products in live-stream commerce.
Pattern recognition for surface electromyogram (sEMG) suffers from its nonstationary and stochastic property. Although it can be relieved by acquiring new training data, it is not only time-consuming and burdensome process but also hard to set the standard when the data acquisition should be held. Therefore, we propose an adaptive sEMG pattern recognition algorithm using principal component analysis. The proposed algorithm finds the relationship between sEMG channels and extracts the optimal principal component. Based on the relative distance, the proposed algorithm determines whether to update the existing patterns or to register the new pattern. From the experimental result, it is shown that multiple patterns are generated from the sEMG data stream and they are highly related to the motion. Furthermore, the proposed algorithm has shown higher classification accuracy than k-nearest neighbor (k-NN) and support vector machine (SVM). We expect that the proposed algorithm is utilized for adaptive and long-lasting pattern recognition.
공간 데이터를 표현하고 처리하기 위해 사분트리 또는 이분트리 등의 계층형 자료 구조가 사용되고 있다. 이분 트리를 선형적으로 표현하기 위해 기존에 제안된 S-트리는 이진 영역 이미지 데이터를 선형적인 이진 비트열로 표현하여 저장 공간을 크게 압축할 수 있는 장점이 있으나, 이미지의 해상도가 높아질수록 이진 비트열의 길이가 길어져 저장 공간이 늘어나고 탐색 성능이 저하되는 문제점이 발생한다. 본 논문에서는 포화 이진 트리 구조를 갖는 여러 개의 분할 이분트리를 계층적으로 구성하고 각 분할 이분트리를 2개의 선형적 이진 비트열로 표현하여 이미지 탐색에 필요한 범위를 축소하는 한편 이진 비트열 경로를 직접 탐색하지 않고 간단한 숫자 변환을 통해 수행하도록 하여 전체적인 탐색 성능을 개선하였다. 최악의 시공간 복잡도 분석에 의한 성능 평가를 통해 제안 방법이 기존의 방법에 비해 우수한 검색 성능과 공간 효율성을 보이는 것으로 분석되었다.
Collaborative filtering is one of the popular techniques for personalized recommendation in e-commerce. In collaborative filtering, user profiles are usually managed per product category in order to reduce data sparsity. Product diversification of Internet storefronts and multiple product category sales of e-commerce portals require cross-product category usage of user profiles in order to overcome the cold start problem of collaborative filtering. In this paper, we study the feasibility of cross-product category usage of user profiles, and suggest a method to improve recommendation performance of cross-product category user profiling. First, we investigate whether user profiles on a product category can be used to recommend products in other product categories. Furthermore, a way of utilizing user profiles selectively is suggested to increase recommendation performance of cross-product category user profiling. The feasibility of cross-product category user profiling and the usefulness of the proposed method are tested with real click stream data of an Internet storefront which sells multiple product categories including books, music CDs, and DVDs. The experiment results show that user profiles on a product category can be used to recommend products in other product categories. Also, the selective usage of user profiles based on correlations between subcategories of two product categories provides better performance than the whole usage of user profiles.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.