• Title/Summary/Keyword: Multiple Path

Search Result 1,083, Processing Time 0.027 seconds

Optimal Path Planning Algorithm for Visiting Multiple Mission Points in Dynamic Environments (동적 변화 환경에서 다중 임무점 방문을 위한 최적 경로 계획 알고리즘)

  • Lee, Hohyeong;Chang, Woohyuk;Jang, Hwanchol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.379-387
    • /
    • 2019
  • The complexity of path planning for visiting multiple mission points is even larger than that of single pair path planning. Deciding a path for visiting n mission points requires conducting $n^2+n$ times of single pair path planning. We propose Multiple Mission $D^*$ Lite($MMD^*L$) which is an optimal path planning algorithm for visiting multiple mission points in dynamic environments. $MMD^*L$ reduces the complexity by reusing the computational data of preceding single pair path planning. Simulation results show that the complexity reduction is significant while its path optimality is not compromised.

A Study on the Obstacle Avoidance and Path Planning Algorithm of Multiple Mobile Robot (다중이동로봇의 장애물 회피 및 경로계획 알고리즘에 관한 연구)

  • 박경진;이기성;이종수
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.31-34
    • /
    • 2000
  • In this paper, we design an optimal path for multiple mobile robots. For this purpose, we propose a new method of path planning for multiple mobile robots in dynamic environment. First, every mobile robot searches a global path using a distance transform algorithm. Then we put subgoals at crooked path points and optimize them. And finally to obtain an optimal on-line local path, ever)r mobile robot searches a new path with static and dynamic obstacle avoidance.

  • PDF

Multiple Path-planning of Unmanned Autonomous Forklift using Modified Genetic Algorithm and Fuzzy Inference system (수정된 유전자 알고리즘과 퍼지 추론 시스템을 이용한 무인 자율주행 이송장치의 다중경로계획)

  • Kim, Jung-Min;Heo, Jung-Min;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1483-1490
    • /
    • 2009
  • This parer is presented multiple path-planning of unmanned autonomous forklift using modified genetic algorithm and fuzzy inference system. There are a task-level feedback method and a method that path is dynamically replaned in realtime while the autonomous vehicles are moving by means of an optimal algorithm for existing multiple path-planning. However, such methods cause malfunctions and inefficiency in the sense of time and energy, and path-planning should be dynamically replanned in realtime. To solve these problems, we propose multiple path-planning using modified genetic algorithm and fuzzy inference system and show the performance with autonomous vehicles. For experiment, we designed and built two autonomous mobile vehicles that equipped with the same driving control part used in actual autonomous forklift, and test the proposed multiple path-planning algorithm. Experimental result that actual autonomous mobile vehicle, we verified that fast optimized path-planning and efficient collision avoidance are possible.

Multiple Drones Collision Avoidance in Path Segment Using Speed Profile Optimization (다수 드론의 충돌 회피를 위한 경로점 구간 속도 프로파일 최적화)

  • Kim, Tae-Hyoung;Kang, Tae Young;Lee, Jin-Gyu;Kim, Jong-Han;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.763-770
    • /
    • 2022
  • In an environment where multiple drones are operated, collisions can occur when path points overlap, and collision avoidance in preparation for this is essential. When multiple drones perform multiple tasks, it is not appropriate to use a method to generate a collision-avoiding path in the path planning phase because the path of the drone is complex and there are too many collision prediction points. In this paper, we generate a path through a commonly used path generation algorithm and propose a collision avoidance method using speed profile optimization from that path segment. The safe distance between drones was considered at the expected point of collision between paths of drones, and it was designed to assign a speed profile to the path segment. The optimization problem was defined by setting the distance between drones as variables in the flight time equation. We constructed the constraints through linearize and convexification, and compared the computation time of SQP and convex optimization method in multiple drone operating environments. Finally, we confirmed whether the results of performing convex optimization in the 20 drone operating environments were suitable for the multiple drone operating system proposed in this study.

Mission Path Planning to Maximize Survivability for Multiple Unmanned Aerial Vehicles based on 3-dimensional Grid Map (3차원 격자지도 기반 생존성 극대화를 위한 다수 무인 항공기 임무경로 계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.25 no.3
    • /
    • pp.365-375
    • /
    • 2012
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for humans. UAVs are currently employed in many military missions and a number of civilian applications. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$_PGA (A-star with Post Smoothing_Parallel Genetic Algorithm) for Multiple UAVs's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and MTSP (Multiple Traveling Salesman Problem). After transforming MRPP into Shortest Path Problem (SPP),$A^*PS$_PGA applies a path planning for multiple UAVs.

Development of Exit Burr Identification Algorithm on Multiple Feature Workpiece and Multiple Tool Path (복합형상 및 다중경로에 대한 Exit Burr 판별 알고리듬의 개발- 스플라인을 포함한 Exit Burr의 해석 -)

  • Kim, Ji-Hwan;Lee, Jang-Beom;Kim, Young-Jin
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.247-252
    • /
    • 2005
  • In the automated production environment in the present days, the minimization of manual operation becomes a very important factor in increasing the efficiency of the production system. The exit burr produced through the milling operation on the edge of workpiece usually requires manual deburring process to enhance the level of precision of the resulting product. So far, researchers have developed various methods to understand the formation of exit burr in cutting process. One method to analytically identify the formation of exit burr was to use the geometrical information of CAD and CAM data used in automated machining. This method, in turn, generated the information resulting from the analysis such as burr type, cutting region, and exit angle. Up to now, the geometrical data were restricted to the single feature and single path. In this paper, a method to deal with the complicated geometric features such as line segment, arc, hole, and spline will be presented and validated using the field data. This method also deals with the complex workpiece shape which is a combination of multiple features. As for the cutting path, multiple tool path is analyzed in order to simulate the real cutting process. All this analysis is combined into a Windows based software and real data are used to validate the program in the conclusion.

Transfer Path Identification of Road Noise;Using Multiple Coherence Function and Relative Acceleration (노면가진소음의 전달경로 파악;다중기여도함수 및 연결부위의 상대가속도 이용)

  • 김영기;배병국;김양한;김광준;김명규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.84-92
    • /
    • 1997
  • Among the various sources of vehicle interior noise, this paper concerns the road induced noise ; the identification of its transfer path by using experimental method. Multiple input and single output model is taken as a noise generation model. Because it is impossible to measure the road imput forces directly, the acceleration signals are measured on four axle;three directions for each point. By considering the cross correlations of input signals, four uncorrelated source groups are taken. Multiple coherence function is employed to investigate the contribution of each group. In addtion, to identify the detailed path through the suspension systems, the contributions of all possible paths are ranked by using the coherence functions between interior noise and the relative accelerations of connections such as bushings and mountings. Measurements are performed with passenger vehicle traveling on concrete and asphalt roads at 60㎞/h.

  • PDF

Fracture Mechanics Analysis of Multiple Load Path Plate (다중 균열 보강 판재에 관한 파괴 역학적 해석)

  • Han, Moon-Sik;Lee, Yang-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.109-115
    • /
    • 2001
  • The compliance approach to the problem of load sharing between a cracked plate and multiple plate used to bridge the crack. The theory is validated by using calculated stress intensity factors for the multiple load path plate to reduce experimentally observed growth rate to a common base. Calculations are them made on the effect of multiple load path plate width on fatigue crack retardation in order to demonstrate the predictive capability of the technique.

  • PDF

Spatial target path following and coordinated control of multiple UUVs

  • Qi, Xue;Xiang, Peng;Cai, Zhi-jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.832-842
    • /
    • 2020
  • The coordination control of multiple Underactuated Underwater Vehicles (UUVs) moving in three dimensional space is investigated in this paper. The coordinated path following control task is decomposed into two sub tasks, that is, path following control and coordination control. In the spatial curve path following control task, path following error dynamics is build in the Serret-Frenet coordinate frame. The virtual reference object can be chosen freely on the desired spatial path. Considering the speed of the UUV, the line-of-sight navigation is introduced to help the path following errors quickly converge to zero. In the coordination control sub task, the communication topology of multiple UUVs is described by the graph theory. The speed of each UUV is adjusted to achieve the coordination. The path following system and the coordination control system are viewed as the feedback connection system. Input-to-state stable of the coordinated path following system can be proved by small gain theorem. The simulation experiments can further demonstrate the good performance of the control method.

Path Loss Model with Multiple-Antenna and Doppler Shift for High Speed Railroad Communication (다중 안테나와 Doppler Shift를 고려한 고속 철도의 경로 손실 모델)

  • Park, Hae-Gyu;Yoon, Kee-Hoo;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.8
    • /
    • pp.437-444
    • /
    • 2014
  • In this paper, we propose a path loss model with the multiple antennas and doppler shift for high speed railroad communication. Path loss model is very important in order to design consider diverse characteristic in high-speed train communication. Currently wireless communication systems use the multiple antennas in order to improve the channel capacity or diversity gain. However, until recently, many researches on path loss model only consider geographical environment between the transmitter and the receiver. There is no study about path loss model considering diversity effect and doppler shift. In order to make average residuals considering doppler shift we use tuned free space path loss model which is utilized for measurement results at high speed railroad. The environment of high speed rail is mostly at viaduct and flatland over than 50 percent. And in order to make average residuals considering multiple antenna we use theoretical estimation of diversity gain with MRC scheme. proposed model predict loss of received signal by estimating average residuals between diversity effect and doppler shift.