• 제목/요약/키워드: Multiple Objective Genetic Algorithm

검색결과 90건 처리시간 0.032초

Performance assessment of buildings isolated with S-FBI system under near-fault earthquakes

  • Ozbulut, Osman E.;Silwal, Baikuntha
    • Smart Structures and Systems
    • /
    • 제17권5호
    • /
    • pp.709-724
    • /
    • 2016
  • This study investigates the optimum design parameters of a superelastic friction base isolator (S-FBI) system through a multi-objective genetic algorithm to improve the performance of isolated buildings against near-fault earthquakes. The S-FBI system consists of a flat steel-PTFE sliding bearing and superelastic NiTi shape memory alloy (SMA) cables. Sliding bearing limits the transfer of shear across the isolation interface and provides damping from sliding friction. SMA cables provide restoring force capability to the isolation system together with additional damping characteristics. A three-story building is modeled with S-FBI isolation system. Multiple-objective numerical optimization that simultaneously minimizes isolation-level displacements and superstructure response is carried out with a genetic algorithm in order to optimize S-FBI system. Nonlinear time history analyses of the building with optimal S-FBI system are performed. A set of 20 near-fault ground motion records are used in numerical simulations. Results show that S-FBI system successfully control response of the buildings against near-fault earthquakes without sacrificing in isolation efficacy and producing large isolation-level deformations.

다목적 환경에서의 ATIS 운영을 위한 $A^*$ 탐색 알고리듬과 유전자 알고리듬의 혼합모형 (A Hybrid Model of $A^*$ Search and Genetic Algorithms for ATIS under Multiple Objective Environment)

  • 장인성
    • 대한산업공학회지
    • /
    • 제26권4호
    • /
    • pp.421-430
    • /
    • 2000
  • This paper presents a new approach which uses $A^*$ search and genetic algorithms for solving large scale multi-objective shortest path problem. The focus of this paper is motivated by the problem of finding Pareto optimal paths for an advanced traveler information system(ATIS) in the context of intelligent transportation system(ITS) application. The individual description, the decoding rule, the selection strategy and the operations of crossover and mutation are proposed for this problem. The keynote points of the algorithm are how to represent individuals and how to calculate the fitness of each individual. The high performance of the proposed algorithm is demonstrated by computer simulations.

  • PDF

Generation of Business Process Reference Model Considering Multiple Objectives

  • Yahya, Bernardo Nugroho;Wu, Jei-Zheng;Bae, Hye-Rim
    • Industrial Engineering and Management Systems
    • /
    • 제11권3호
    • /
    • pp.233-240
    • /
    • 2012
  • The implementation of business process management (BPM) systems in large number of business organizations transforms BPM system into such a level of maturity and tends to collect large repositories of business process (BP) models. This issue encourages BP flexibility that leads to a large number of process variants derived from the same model, but differing in structure, to be stored in the large repositories of BP models. Therefore, the repositories may include thousands of activities and related business objects with variation of requirements and quality of service. It is a common practice to customize processes from reference processes or templates in order to reduce the time and effort required to design and deploy processes on all levels. In order to address redundancy and underutilization problems, a generic process model, called as reference BP, is absolutely necessary to cover the best of process variants. This study aims to develop multiple-objective business process genetic algorithm (MOBPGA) to find a set of non-dominated (Pareto) solutions of business reference model to enhance conventional approach which considered only a single objective on creating BP reference model by using proximity score measurement. A mixed-integer linear program is constructed to evaluate performance of the proposed MOBPGA on small-scale problems by using standard measures for multiple-objective techniques. The results will show the viability of applying MOBPGA in terms of simultaneously maximizing proximity score measurement, minimizing total duration, and total costs of the selected reference model.

처짐과 무게를 고려한 주물 프레임의 다중목적 근사최적설계 (Approximate Multi-Objective Optimization of Robot Casting Considering Deflection and Weight)

  • 최하영;이종수;박준오
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.954-960
    • /
    • 2012
  • Nowadays, rapidly changing and unstable global economic environments request a lot of roles to engineers. In this situation, product should be designed to make more profit by cost down and to satisfy distinguished performance comparing to other competitive ones. In this research, the optimization design of the industrial robot casting will be done. The weight and deflection have to be reduced as objective functions and stress has to be constrained under some constant value. To reduce time cost, CCD (Central Composite Design) will be used to make experimental design. And RSM (Response Surface Methodology) will be taken to make regression model for objective functions and constraint function. Finally, optimization will be done with Genetic Algorithm. In this problem, the objective functions are multiple, so NSGA-II which is brilliant and efficient for such a problem will be used. For the solution quality check, the diversity between Pareto solutions will be also checked.

Resource Allocation for Relay-Aided Cooperative Systems Based on Multi-Objective Optimization

  • Wu, Runze;Zhu, Jiajia;Hu, Hailin;He, Yanhua;Tang, Liangrui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2177-2193
    • /
    • 2018
  • This paper studies resource allocation schemes for the relay-aided cooperative system consisting of multiple source-destination pairs and decode-forward (DF) relays. Specially, relaying selection, multisubcarrier pairing and assignment, and power allocation are investigated jointly. We consider a combinatorial optimization problem on quality of experience (QoE) and energy consumption based on relay-aided cooperative system. For providing better QoE and lower energy consumption we formulate a multi-objective optimization problem to maximize the total mean opinion score (MOS) value and minimize the total power consumption. To this end, we employ the nondominated sorting genetic algorithm version II (NSGA-II) and obtain sets of Pareto optimal solutions. Specially, two formulas are devised for the optimal solutions of the multi-objective optimization problems with and without a service priority constraint. Moreover, simulation results show that the proposed schemes are superior to the existing ones.

유전자 알고리듬을 이용한 강인 미동 탐색 제어기의 설계 (Design of a Robust Fine Seek Controller Using a Genetic Algorithm)

  • 이문노;진경복
    • 한국소음진동공학회논문집
    • /
    • 제25권5호
    • /
    • pp.361-368
    • /
    • 2015
  • This paper deals with a robust fine seek controller design problem with multiple constraints using a genetic algorithm. A robust $H\infty$ constraint is introduced to attenuate effectively velocity disturbance caused by the eccentric rotation of the disk. A weighting function is optimally selected based on the estimation of velocity disturbance and the estimated minimum velocity loop gain. A robust velocity loop constraint is considered to minimize the variances of the velocity loop gain and bandwidth against the uncertainties of fine actuator. Finally, a robust fine seek controller is obtained by solving a genetic algorithm with an LMI condition and an appropriate objective function. The proposed controller design method is applied to the fine seek control system of a DVD recording device and is evaluated through the experimental results.

3차원 격자지도 기반 생존성 극대화를 위한 다수 무인 항공기 임무경로 계획 (Mission Path Planning to Maximize Survivability for Multiple Unmanned Aerial Vehicles based on 3-dimensional Grid Map)

  • 김기태;전건욱
    • 산업공학
    • /
    • 제25권3호
    • /
    • pp.365-375
    • /
    • 2012
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for humans. UAVs are currently employed in many military missions and a number of civilian applications. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$_PGA (A-star with Post Smoothing_Parallel Genetic Algorithm) for Multiple UAVs's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and MTSP (Multiple Traveling Salesman Problem). After transforming MRPP into Shortest Path Problem (SPP),$A^*PS$_PGA applies a path planning for multiple UAVs.

실수형 Genetic Algorithm에 의한 최적 설계 (A Real Code Genetic Algorithm for Optimum Design)

  • 양영순;김기화
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.187-194
    • /
    • 1995
  • Traditional genetic algorithms(GA) have mostly used binary code for representing design variable. The binary code GA has many difficulties to solve optimization problems with continuous design variables because of its targe computer core memory size, inefficiency of its computing time, and its bad performance on local search. In this paper, a real code GA is proposed for dealing with the above problems. So, new crossover and mutation processes of read code GA are developed to use continuous design variables directly. The results of real code GA are compared with those of binary code GA for several single and multiple objective optimization problems. As results of comparisons, it is found that the performance of the real code GA is better than that of the binary code GA, and concluded that the rent code GA developed here can be used for the general optimization problem.

  • PDF

A New Multi-objective Evolutionary Algorithm for Inter-Cloud Service Composition

  • Liu, Li;Gu, Shuxian;Fu, Dongmei;Zhang, Miao;Buyya, Rajkumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.1-20
    • /
    • 2018
  • Service composition in the Inter-Cloud raises new challenges that are caused by the different Quality of Service (QoS) requirements of the users, which are served by different geo-distributed Cloud providers. This paper aims to explore how to select and compose such services while considering how to reach high efficiency on cost and response time, low network latency, and high reliability across multiple Cloud providers. A new hybrid multi-objective evolutionary algorithm to perform the above task called LS-NSGA-II-DE is proposed, in which the differential evolution (DE) algorithm uses the adaptive mutation operator and crossover operator to replace the those of the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) to get the better convergence and diversity. At the same time, a Local Search (LS) method is performed for the Non-dominated solution set F{1} in each generation to improve the distribution of the F{1}. The simulation results show that our proposed algorithm performs well in terms of the solution distribution and convergence, and in addition, the optimality ability and scalability are better compared with those of the other algorithms.