• 제목/요약/키워드: Multiple Mobile Node

Search Result 114, Processing Time 0.024 seconds

ERPM: An Entropy-based Routing Protocol using Mobility in Mobile Ad-hoc Wireless Networks (ERPM: 모바일 Ad-hoc 무선 네트워크에서 이동성을 이용한 엔트로피 기반 라우팅 프로토콜)

  • An, Beong-Ku;Lee, Joo-Sang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.17-24
    • /
    • 2011
  • In this paper, we propose an Entropy-based Routing Protocol using Mobility (ERPM) for supporting ubiquitous convergence services efficiently in mobile ad-hoc wireless networks. The main features that the ERPM introduces to obtain the goals can be summarized as follows. First, ERPM can construct stable routing routes based on the entropy concepts using mobility of nodes. Second, ERPM can quantitatively evaluate the stability of route by entropy concepts using mobility of nodes. Third, ERPM can select the most stable route in the view points of mobility of routes between a source node and a destination node, where multiple paths are available. The performance evaluation of the proposed ERPM performed via simulation using OPNET and analysis shows that the ERPM can support the construction of stable routing routes and increase the transmission ratio of data efficiently.

Dynamic Source Multi-path Routing Protocol for Wireless Ad-hoc Network Environments (무선 에드-혹 네트워크 환경을 위한 동적다중경로라우팅 프로토콜)

  • Kim, Moon-Jeong;Eom, Young-Ik
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.3
    • /
    • pp.336-346
    • /
    • 2001
  • A wireless ad-hoc network is a temporal network formed by a collection of wireless mobile nodes without the aid of any existing network infrastnlcture or centralized administration. Currently, numerous routing protocols have been developed for changing messages between nodes in a wireless ad-hoc network. Applications of wireless ad-hoc network technology are various and proper routing protocol must be used according to application domain or network size. In a wireless ad-hoc network. some hosts want services from fixed networks. For supporting such services, it is necessary to interconnect wireless ad-hoc networks and fixed networks. The DSMIHDynamic Source Multipath Routing) protocol, proposed in this paper, focuses on supporting seamless communication services between the nodes within a wireless ad-hoc network and providing fixed networks to the mobile hosts in wireless an-hoc networks. In DSMR protocol, each node need not broadcast routing messages periodically. and mobile hosts that to send data packets initiate route request and route establishment procedure. By maintaining multiple paths in each node. faster route re-establishment is also possible in our scheme.

  • PDF

Simulation model of a multihomed node with WiMAX and WLAN (WiMAX - WLAN 멀티홈드 노드의 시뮬레이션 모델)

  • Zhang, Xiao-Lei;Wang, Ye;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.111-119
    • /
    • 2010
  • With the rapid progress of wireless technologies today, mobile terminals with multiple access interfaces are emerging. In recent years, WLAN (Wireless Local Area Networks) has become the premier choice for many homes and enterprises. WiMAX (Worldwide Interoperability for Microwave Access) has also emerged as the wireless standard that aims to deliver data over long distances. Therefore, it is important to explore efficient integration methods for delivering multimedia data between heterogeneous wireless networks. In this paper, we developed the simulation models and environments for the mobile multihomed node that has both WiMAX and WLAN interfaces and can move around in both networks by using mobile IP. In order to verify the developed models, we designed and constructed several simulation scenarios, e.g. movement in WiMAX/WLAN, group mobility, MANET, and nested MIP under the various traffic environments such as oneway or bothway UDP packets, FTP traffic, and voice with SIP protocol. The simulation results show that the developed models are useful for mobility studies in various integrated wireless networks.

An Efficient Reactive Routing Protocol based on the Multi-rate Aware MAC for Mobile Ad Hoc Networks (이동 애드 혹 망에서 다중 전송속도를 갖는 MAC 기반의 효율적인 반응형 라우팅 프로토콜)

  • Lee, Jae-Hwoon;Lim, Yu-Jin;Ahn, Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.15C no.1
    • /
    • pp.45-50
    • /
    • 2008
  • Mobile ad hoc networks (MANETs) allow mobile nodes to communicate among themselves via wireless multiple hops without the help of the wired infrastructure. Therefore, in the MANET, a route setup mechanism that makes nodes not within each other's transmission range communicate is required and, for this, the Ad-hoc On-demand Distance Vector (AODV) was proposed as one of the reactive routing protocols well suited for the characteristics of the MANET. AODV uses the hop count as the routing metric and, as a result, a node selects the farthest neighbor node as its next hop on a route, which results in a problem of deteriorating the overall network throughput because of selecting a relatively low data rate route. In this paper, we propose an efficient reactive routing protocol based on the multi-rate aware MAC. Through the simulations, we analyze the performance of our proposed mechanism and, from the simulation results, we show that our proposed mechanism outperforms the existing mechanism.

Service Discovery Scheme for Wireless Ad-hoc Networks (무선 애드-혹 네트워크를 위한 효율적인 서비스 검색 기법)

  • Kim, Moon-Jeong;Lee, Dong-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.13 no.2
    • /
    • pp.245-250
    • /
    • 2008
  • Efficient service discovery mechanism is a crucial feature for the usability of a wireless ad-hoc network. A wireless ad-hoc network is a temporal network formed by a collection of wireless mobile nodes without the aid of any existing network infrastructure or centralized administration. We propose an efficient service discovery mechanism using non-disjoint multi-path routing protocol for a wireless ad-hoc network. Our scheme has advantages of not only multi-path routing protocol but also cross-layer service discovery. By simulation, we showed that faster route recovery is possible by maintaining multiple routing paths in each node, and the route maintenance overhead can be reduced by limiting the number of multiple routing paths and by maintaining link/node non-disjoint multi-path.

Performance analysis of BTB-TDMA considering asymmetry of propagation delays in UANets (수중 네트워크의 전파 비대칭성을 고려한 BTB-TDMA 성능 분석)

  • Cho, A-Ra;Yun, Changho;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.50-60
    • /
    • 2015
  • A Block-Time-Bounded Time Division Multiple Access (BTB-TDMA) medium access control protocol, which estimates the propagation delay of nodes according to their location and moving velocity information, has been proposed for underwater acoustic networks. BTB-TDMA provides nodes with their transmission schedules by a time block that is a time unit, newly designed for BTB-TDMA. In this paper, we investigate how the receiver collision, that is induced by the asymmetry between node's uplink and downlink propagation delay due to its mobility, affects the performance of BTB-TDMA. To do this, we analytically obtain the collision rate, the channel access delay, and the channel utilization by considering the asymmetry of propagation delay. Then, simulations are extensively performed with respect to the length of a time block by varying the number of nodes, the network range, and the node's velocity. Thus, the simulation results can suggest performance criteria to determine the optimal length of a time block which minimizes the collision rate and concurrently maximizes the channel access delay and the channel utilization.

Fast Mobility Management Method Using Multi-Casting Tunneling in Heterogeneous Wireless Networks (이기종 무선 네트워크에서 멀티 캐스팅 터널링을 이용한 이동성 관리 방법)

  • Chun, Seung-Man;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.69-77
    • /
    • 2010
  • This paper presents a fast IP mobility management scheme in heterogeneous networks using the multiple wireless network interlaces. More specifically, in order to minimize the packet loss and handover latency due to handover, the E-HMIPv6, IETF HMIPv6 has been extended, is presented where the multiple tunnels between E-MAP and mobile node are dynamically constructed. E-HMIPv6 is composed of the extension of IETF HMIPv6 MAP, handover procedure, and simultaneous multiple tunnels. In order to demonstrate superior to the proposed method, the NS-2 simulation has done for performance evaluation of TCP and UDP-based application comparison with the existing mobility management method.

Load Balancing Mechanisms for Foreign Agents in Hierarchical Mobile IPv4 Networks (계층적 MIPv4 네트워크에서의 외부 에이전트 부하 분산 방안)

  • Byun Haesun;Lee Meejeong
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.2
    • /
    • pp.167-179
    • /
    • 2005
  • In hierarchical Mobile IPv4 Networks the highest FA(Foreign Agent) may experience serious congestion and delay since the highest FA plays a role of CoA(Care of Address) for all mobile nodes in the domain, In this paper, we propose mechanism called 'HRFA(Hierarchical Root Foreign Agent)', which distributes the load imposed on the highest FA. In the proposed HRFA scheme, multiple HRFAs are selected to provide the similar service that is provided by the highest FA. According to which entity determines HRFAs, HRFA scheme is categorized into 'Active' and 'Passive' approaches. HRFA scheme is further categorized into 'All MN(Mobile Node)s' and 'New MNs' approaches, depending on which mobile nodes are assigned to a newly elected HRFA. Through a course of simulations, we investigate the performance of 4 possible combinations of HRFA schemes. We also compare the performance of the proposed HRFA schemes with the LMSP(Local Multicast Service Provider) scheme, which is a scheme to distribute the load of FA for multicast service in hierarchical wireless network domain. The simulation results show that the Passive & New MN approach performs best with respect to both the overhead and the load balancing.

A Node-disjoint Multipath Discovery Method by Local Route Discovery based on AODV (AODV기반의 지역경로탐색을 이용한 노드 비중첩 다중 경로 검색 기법)

  • Jin, Dong-Xue;Kim, Young-Rag;Kim, Chong-Gun
    • The KIPS Transactions:PartC
    • /
    • v.14C no.1 s.111
    • /
    • pp.87-94
    • /
    • 2007
  • In mobile ad hoc networks the most popular on demand routing protocols are the Dynamic Source Routing (DSR) protocol and the Ad hoc On demand Distance Vector (AODV) routing protocol. These and other representative standard routing protocols are designed to find and maintain only a single path. Whenever there is a link break on the active route, source node has to invoke a route discovery process from the beginning and it causes a lot of overhead. Multipath routing protocols, which can alleviate these problems by establishing multiple alternative paths between a source and a destination, are widely studied. In this paper we propose a node disjoint multipath discovery technique based on AODV local route discovery. This technique can find and build completely separated node disjoint multi paths from a source to a destination as many as possible. It will make routing more robust and stable.

An Energy Efficient Multichannel MAC Protocol for QoS Provisioning in MANETs

  • Kamruzzaman, S.M.;Hamid, Md. Abdul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.684-702
    • /
    • 2011
  • This paper proposes a TDMA-based multichannel medium access control (MAC) protocol for QoS provisioning in mobile ad hoc networks (MANETs) that enables nodes to transmit their packets in distributed channels. The IEEE 802.11 standard supports multichannel operation at the physical (PHY) layer but its MAC protocol is designed only for a single channel. The single channel MAC protocol does not work well in multichannel environment because of the multichannel hidden terminal problem. Our proposed protocol enables nodes to utilize multiple channels by switching channels dynamically, thus increasing network throughput. Although each node of this protocol is equipped with only a single transceiver but it solves the multichannel hidden terminal problem using temporal synchronization. The proposed energy efficient multichannel MAC (EM-MAC) protocol takes the advantage of both multiple channels and TDMA, and achieves aggressive power savings by allowing nodes that are not involved in communications to go into power saving "sleep mode". We consider the problem of providing QoS guarantee to nodes as well as to maintain the most efficient use of scarce bandwidth resources. Our scheme improves network throughput and lifetime significantly, especially when the network is highly congested. The simulation results show that our proposed scheme successfully exploits multiple channels and significantly improves network performance by providing QoS guarantee in MANETs.