• Title/Summary/Keyword: Multiple Linear

Search Result 3,046, Processing Time 0.027 seconds

Motion estimation method using multiple linear regression model (다중선형회귀모델을 이용한 움직임 추정방법)

  • 김학수;임원택;이재철;이규원;박규택
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.98-103
    • /
    • 1997
  • Given the small bit allocation for motion information in very low bit-rate coding, motion estimation using the block matching algorithm(BMA) fails to maintain an acceptable level of prediction errors. The reson is that the motion model, or spatial transformation, assumed in block matching cannot approximate the motion in the real world precisely with a small number of parameters. In order to overcome the drawback of the conventional block matching algorithm, several triangle-based methods which utilize triangular patches insead of blocks have been proposed. To estimate the motions of image sequences, these methods usually have been based on the combination of optical flow equation, affine transform, and iteration. But the compuataional cost of these methods is expensive. This paper presents a fast motion estimation algorithm using a multiple linear regression model to solve the defects of the BMA and the triange-based methods. After describing the basic 2-D triangle-based method, the details of the proposed multiple linear regression model are presented along with the motion estimation results from one standard video sequence, representative of MPEG-4 class A data. The simulationresuls show that in the proposed method, the average PSNR is improved about 1.24 dB in comparison with the BMA method, and the computational cost is reduced about 25% in comparison with the 2-D triangle-based method.

  • PDF

Subset selection in multiple linear regression: An improved Tabu search

  • Bae, Jaegug;Kim, Jung-Tae;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.138-145
    • /
    • 2016
  • This paper proposes an improved tabu search method for subset selection in multiple linear regression models. Variable selection is a vital combinatorial optimization problem in multivariate statistics. The selection of the optimal subset of variables is necessary in order to reliably construct a multiple linear regression model. Its applications widely range from machine learning, timeseries prediction, and multi-class classification to noise detection. Since this problem has NP-complete nature, it becomes more difficult to find the optimal solution as the number of variables increases. Two typical metaheuristic methods have been developed to tackle the problem: the tabu search algorithm and hybrid genetic and simulated annealing algorithm. However, these two methods have shortcomings. The tabu search method requires a large amount of computing time, and the hybrid algorithm produces a less accurate solution. To overcome the shortcomings of these methods, we propose an improved tabu search algorithm to reduce moves of the neighborhood and to adopt an effective move search strategy. To evaluate the performance of the proposed method, comparative studies are performed on small literature data sets and on large simulation data sets. Computational results show that the proposed method outperforms two metaheuristic methods in terms of the computing time and solution quality.

MLR & ANN approaches for prediction of compressive strength of alkali activated EAFS

  • Ozturk, Murat;Cansiz, Omer F.;Sevim, Umur K.;Bankir, Muzeyyen Balcikanli
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.559-567
    • /
    • 2018
  • In this study alkali activation of Electric Arc Furnace Slag (EAFS) is studied with a comprehensive test program. Three different silicate moduli (1-1,5-2), three different sodium concentrations (4%-6%-8%) for each silicate module, two different curing conditions (45%-98% relative humidity) for each sodium concentration, two different curing temperatures ($400^{\circ}C-800^{\circ}C$) for each relative humidity condition and two different curing time (6h-12h) for each curing temperature variables are selected and their effects on compressive strength was evaluated then regression equations using multiple linear regressions methods are fitted. And then to select the best regression models confirm with using the variables, the regression models compared between itself. An Artificial Neural Network (ANN) models that use silicate moduli, sodium concentration, relative humidity, curing temperature and curing time variables, are formed. After the investigation of these ANN models' results, ANN and multiple linear regressions based models are compared with each other. After that, an explicit formula is developed with values of the ANN model. As a result of this study, the fluctuations of data set of the compressive strength were very well reflected using both of the methods, multiple linear regression with quadratic terms and ANN.

An Application of Linear Programming to Multiple-Use Forest Management Planning (다목적(多目的) 산림경영계획(山林經營計劃)을 위한 선형계획법(線型計劃法)의 응용(應用))

  • Park, Eun Sik;Chung, Joo Sang
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.273-281
    • /
    • 1999
  • In this study, linear programming (LP) was applied to solving for optimal harvesting schedules of multiple-use forest management in Mt. Kari area managed by Chunchun National Forest Station. Associated with the geographic characteristics, the study area was classified into 4 large management units or watersheds and simultaneously applied were the site-specific levels of management constraints : nondeclining yield, initial cut for existing stands, % cut area, the volume of soil erosion, timber production and carbon storage, ending inventory condition and % area species selection for regeneration. The problem was formulated using both Model I and Model II techniques. In this paper, the formulations are presented and the results of the optimal solutions are discussed for comparison purposes.

  • PDF

Predicting the Soluble Solids of Apples by Near Infrared Spectroscopy (I) - Multiple Linear Regression Models - (근적외선을 이용한 사과의 당도예측 (I) - 다중회귀모델 -)

  • ;W. R. Hruschka;J. A. Abbott;;B. S. Park
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.561-570
    • /
    • 1998
  • The MLR(Multiple Linear Regression) models to estimate soluble solids content non-destructively were presented to make a selection of optimal photosensor utilized to measure the soluble solids content of apples. Visible and NIR absorbance in the 400 to 2498 nanometer(nm) wavelength region, soluble solids content(sugar content), hardness, and weight were measured for 400 apples(gala). Spectrophotometer with fiber optic probe was utilized for spectrum measurement and digital refractometer was used for soluble solids content. Correlation between absorbance spectrum and soluble solids content was analyzed to pick out the optimal wavelengths and to develop corresponding prediction model by means of MLR. For the coefficient of determination($R^2$) to be over 0.92, the MLR models out of the original absorbance were built based on 7 wavelengths of 992, 904, 1096, 1032, 880, 824, 1048nm, and the ones of the second derivative absorbance based on 5 wavelengths of 784, 1056, 992, 808, 872nm. The best model of the second derivative absorbance spectrum had $R^2$=0.91, bias= -0.02bx, SEP=0.28bx for unknown samples.

  • PDF

MOISTURE CONTENT MEASUREMENT OF POWDERED FOOD USING RF IMPEDANCE SPECTROSCOPIC METHOD

  • Kim, K. B.;Lee, J. W.;S. H. Noh;Lee, S. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.188-195
    • /
    • 2000
  • This study was conducted to measure the moisture content of powdered food using RF impedance spectroscopic method. In frequency range of 1.0 to 30㎒, the impedance such as reactance and resistance of parallel plate type sample holder filled with wheat flour and red-pepper powder of which moisture content range were 5.93∼-17.07%w.b. and 10.87 ∼ 27.36%w.b., respectively, was characterized using by Q-meter (HP4342). The reactance was a better parameter than the resistance in estimating the moisture density defined as product of moisture content and bulk density which was used to eliminate the effect of bulk density on RF spectral data in this study. Multivariate data analyses such as principal component regression, partial least square regression and multiple linear regression were performed to develop one calibration model having moisture density and reactance spectral data as parameters for determination of moisture content of both wheat flour and red-pepper powder. The best regression model was one by the multiple linear regression model. Its performance for unknown data of powdered food was showed that the bias, standard error of prediction and determination coefficient are 0.179% moisture content, 1.679% moisture content and 0.8849, respectively.

  • PDF

Estimation of Soil Moisture Using Multiple Linear Regression Model and COMS Land Surface Temperature Data (다중선형 회귀모형과 천리안 지면온도를 활용한 토양수분 산정 연구)

  • Lee, Yong Gwan;Jung, Chung Gil;Cho, Young Hyun;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.11-20
    • /
    • 2017
  • This study is to estimate the spatial soil moisture using multiple linear regression model (MLRM) and 15 minutes interval Land Surface Temperature (LST) data of Communication, Ocean and Meteorological Satellite (COMS). For the modeling, the input data of COMS LST, Terra MODIS Normalized Difference Vegetation Index (NDVI), daily rainfall and sunshine hour were considered and prepared. Using the observed soil moisture data at 9 stations of Automated Agriculture Observing System (AAOS) from January 2013 to May 2015, the MLRMs were developed by twelve scenarios of input components combination. The model results showed that the correlation between observed and modelled soil moisture increased when using antecedent rainfalls before the soil moisture simulation day. In addition, the correlation increased more when the model coefficients were evaluated by seasonal base. This was from the reverse correlation between MODIS NDVI and soil moisture in spring and autumn season.

Multi-Frame Face Classification with Decision-Level Fusion based on Photon-Counting Linear Discriminant Analysis

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.332-339
    • /
    • 2014
  • Face classification has wide applications in security and surveillance. However, this technique presents various challenges caused by pose, illumination, and expression changes. Face recognition with long-distance images involves additional challenges, owing to focusing problems and motion blurring. Multiple frames under varying spatial or temporal settings can acquire additional information, which can be used to achieve improved classification performance. This study investigates the effectiveness of multi-frame decision-level fusion with photon-counting linear discriminant analysis. Multiple frames generate multiple scores for each class. The fusion process comprises three stages: score normalization, score validation, and score combination. Candidate scores are selected during the score validation process, after the scores are normalized. The score validation process removes bad scores that can degrade the final output. The selected candidate scores are combined using one of the following fusion rules: maximum, averaging, and majority voting. Degraded facial images are employed to demonstrate the robustness of multi-frame decision-level fusion in harsh environments. Out-of-focus and motion blurring point-spread functions are applied to the test images, to simulate long-distance acquisition. Experimental results with three facial data sets indicate the efficiency of the proposed decision-level fusion scheme.

Multiple Linear Chirp Based Transmission Scheme for IEEE 802.15.4a Chirp Spread Spectrum (IEEE 802.15.4a CSS를 위한다중 선형 Chirp 전송 기법)

  • Kim, Kwang-yul;Lee, Seung-woo;Kim, Yong-sin;Lee, Jae-seang;Kim, Jin-young;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1937-1939
    • /
    • 2015
  • In order to improve the performance of a chirp based transmission scheme, the cross-coherence property should be carefully considered. In this paper, we propose two pairs of combinations using multiple linear chirp (MLC) which can reduce the cross-coherence for improving IEEE 802.15.4a chirp spread spectrum systems. The simulation results show that the proposed MLC scheme can improve the performance by considering the cross-coherence.

A Case Study on the Improvement of Display FAB Production Capacity Prediction (디스플레이 FAB 생산능력 예측 개선 사례 연구)

  • Ghil, Joonpil;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.2
    • /
    • pp.137-145
    • /
    • 2020
  • Various elements of Fabrication (FAB), mass production of existing products, new product development and process improvement evaluation might increase the complexity of production process when products are produced at the same time. As a result, complex production operation makes it difficult to predict production capacity of facilities. In this environment, production forecasting is the basic information used for production plan, preventive maintenance, yield management, and new product development. In this paper, we tried to develop a multiple linear regression analysis model in order to improve the existing production capacity forecasting method, which is to estimate production capacity by using a simple trend analysis during short time periods. Specifically, we defined overall equipment effectiveness of facility as a performance measure to represent production capacity. Then, we considered the production capacities of interrelated facilities in the FAB production process during past several weeks as independent regression variables in order to reflect the impact of facility maintenance cycles and production sequences. By applying variable selection methods and selecting only some significant variables, we developed a multiple linear regression forecasting model. Through a numerical experiment, we showed the superiority of the proposed method by obtaining the mean residual error of 3.98%, and improving the previous one by 7.9%.