• Title/Summary/Keyword: Multiple Interval Prediction

Search Result 38, Processing Time 0.023 seconds

Age Prediction based on the Transcriptome of Human Dermal Fibroblasts through Interval Selection (피부섬유모세포 전사체 정보를 활용한 구간 선택 기반 연령 예측)

  • Seok, Ho-Sik
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.494-499
    • /
    • 2022
  • It is reported that genome-wide RNA-seq profiles has potential as biomarkers of aging. A number of researches achieved promising prediction performance based on gene expression profiles. We develop an age prediction method based on the transcriptome of human dermal fibroblasts by selecting a proper age interval. The proposed method executes multiple rules in a sequential manner and a rule utilizes a classifier and a regression model to determine whether a given test sample belongs to the target age interval of the rule. If a given test sample satisfies the selection condition of a rule, age is predicted from the associated target age interval. Our method predicts age to a mean absolute error of 5.7 years. Our method outperforms prior best performance of mean absolute error of 7.7 years achieved by an ensemble based prediction method. We observe that it is possible to predict age based on genome-wide RNA-seq profiles but prediction performance is not stable but varying with age.

A Prediction Model for Functional Recovery After Stroke (뇌졸중 환자의 기능회복에 대한 예측모델)

  • Won, Jong-Im;Lee, Mi-Young
    • Physical Therapy Korea
    • /
    • v.17 no.3
    • /
    • pp.59-67
    • /
    • 2010
  • Mortality rates from stroke have been declining. Because of this, more people are living with residual disability. Rehabilitation plays an important role in functional recovery of stroke survivors. In stroke rehabilitation, early prediction of the obtainable level of functional recovery is desirable to deliver efficient care, set realistic goals, and provide appropriate discharge planning. The purpose of this study was to identify predictors of functional outcome after stroke using inpatient rehabilitation as measured by Functional Independence Measure (FIM) total scores. Correlation and stepwise multiple regression analyses were performed on data collected retrospectively from two-hundred thirty-five patients. More than moderate correlation was found between FIM total scores at the time of hospital admission and FIM total scores at the time of discharge from the hospital. Significant predictors of FIM at the time of discharge were FIM total scores at the time of hospital admission, age, and onset-admission interval. The equation was as follows: expected discharge FIM total score = $76.12+.62{\times}$(admission FIM total score)-$.38{\times}(age)-.15{\times}$(onset-admission interval). These findings suggest that FIM total scores at the time of hospital admission, age, and onset-admission interval are important determinants of functional outcome.

Design of Multiple Model Fuzzy Predictors using Data Preprocessing and its Application (데이터 전처리를 이용한 다중 모델 퍼지 예측기의 설계 및 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.173-180
    • /
    • 2009
  • It is difficult to predict non-stationary or chaotic time series which includes the drift and/or the non-linearity as well as uncertainty. To solve it, we propose an effective prediction method which adopts data preprocessing and multiple model TS fuzzy predictors combined with model selection mechanism. In data preprocessing procedure, the candidates of the optimal difference interval are determined based on the correlation analysis, and corresponding difference data sets are generated in order to use them as predictor input instead of the original ones because the difference data can stabilize the statistical characteristics of those time series and better reveals their implicit properties. Then, TS fuzzy predictors are constructed for multiple model bank, where k-means clustering algorithm is used for fuzzy partition of input space, and the least squares method is applied to parameter identification of fuzzy rules. Among the predictors in the model bank, the one which best minimizes the performance index is selected, and it is used for prediction thereafter. Finally, the error compensation procedure based on correlation analysis is added to improve the prediction accuracy. Some computer simulations are performed to verify the effectiveness of the proposed method.

A Robust Adaptive MIMO-OFDM System Over Multipath Transmission Channels (다중경로 전송 채널 특성에 강건한 적응 MIMO-OFDM 시스템)

  • Kim, Hyun-Dong;Choe, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.762-769
    • /
    • 2007
  • Adaptive MIMO-OFDM (Orthogonal Frequency Division Multiplexing) system adaptively changes modulation scheme depending on feedback channel state information (CSI). The CSI feedback channel which is the reverse link channel has multiple symbol delays including propagation delay, processing delay, frame delay, etc. The unreliable CSI due to feedback delay degrades adaptive modulation system performance. This paper compares the MSE and data capacity with respect to delay and channel signal to noise ratio for the two multi-step channel prediction schemes, CTSBP and BTSBP, such that robust adaptive SISO-OFDM/MIMO-OFDM is designed over severe mobile multipath channel conditions. This paper presents an interpolation method to reduce feedback overhead for adaptive MIMO-OFDM and shows MSE with respect to interpolation interval.

Pressure Drop Predictions Using Multiple Regression Model in Pulse Jet Type Bag Filter Without Venturi (다중회귀모형을 이용한 벤츄리가 없는 충격기류식 여과집진장치 압력손실 예측)

  • Suh, Jeong-Min;Park, Jeong-Ho;Cho, Jae-Hwan;Jin, Kyung-Ho;Jung, Moon-Sub;Yi, Pyong-In;Hong, Sung-Chul;Sivakumar, S.;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.23 no.12
    • /
    • pp.2045-2056
    • /
    • 2014
  • In this study, pressure drop was measured in the pulse jet bag filter without venturi on which 16 numbers of filter bags (Ø$140{\times}850{\ell}$) are installed according to operation condition(filtration velocity, inlet dust concentration, pulse pressure, and pulse interval) using coke dust from steel mill. The obtained 180 pressure drop test data were used to predict pressure drop with multiple regression model so that pressure drop data can be used for effective operation condition and as basic data for economical design. The prediction results showed that when filtration velocity was increased by 1%, pressure drop was increased by 2.2% which indicated that filtration velocity among operation condition was attributed on the pressure drop the most. Pressure was dropped by 1.53% when pulse pressure was increased by 1% which also confirmed that pulse pressure was the major factor affecting on the pressure drop next to filtration velocity. Meanwhile, pressure drops were found increased by 0.3% and 0.37%, respectively when inlet dust concentration and pulse interval were increased by 1% implying that the effects of inlet dust concentration and pulse interval were less as compared with those changes of filtration velocity and pulse pressure. Therefore, the larger effect on the pressure drop the pulse jet bag filter was found in the order of filtration velocity($V_f$), pulse pressure($P_p$), inlet dust concentration($C_i$), pulse interval($P_i$). Also, the prediction result of filtration velocity, inlet dust concentration, pulse pressure, and pulse interval which showed the largest effect on the pressure drop indicated that stable operation can be executed with filtration velocity less than 1.5 m/min and inlet dust concentration less than $4g/m^3$. However, it was regarded that pulse pressure and pulse interval need to be adjusted when inlet dust concentration is higher than $4g/m^3$. When filtration velocity and pulse pressure were examined, operation was possible regardless of changes in pulse pressure if filtration velocity was at 1.5 m/min. If filtration velocity was increased to 2 m/min. operation would be possible only when pulse pressure was set at higher than $5.8kgf/cm^2$. Also, the prediction result of pressure drop with filtration velocity and pulse interval showed that operation with pulse interval less than 50 sec. should be carried out under filtration velocity at 1.5 m/min. While, pulse interval should be set at lower than 11 sec. if filtration velocity was set at 2 m/min. Under the conditions of filtration velocity lower than 1 m/min and high pulse pressure higher than $7kgf/cm^2$, though pressure drop would be less, in this case, economic feasibility would be low due to increased in installation and operation cost since scale of dust collection equipment becomes larger and life of filtration bag becomes shortened due to high pulse pressure.

Prediction of Sunspot Number Time Series using the Parallel-Structure Fuzzy Systems (병렬구조 퍼지시스템을 이용한 태양흑점 시계열 데이터의 예측)

  • Kim Min-Soo;Chung Chan-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.6
    • /
    • pp.390-395
    • /
    • 2005
  • Sunspots are dark areas that grow and decay on the lowest level of the sun that is visible from the Earth. Shot-term predictions of solar activity are essential to help plan missions and to design satellites that will survive for their useful lifetimes. This paper presents a parallel-structure fuzzy system(PSFS) for prediction of sunspot number time series. The PSFS consists of a multiple number of component fuzzy systems connected in parallel. Each component fuzzy system in the PSFS predicts future data independently based on its past time series data with different embedding dimension and time delay. An embedding dimension determines the number of inputs of each component fuzzy system and a time delay decides the interval of inputs of the time series. According to the embedding dimension and the time delay, the component fuzzy system takes various input-output pairs. The PSFS determines the final predicted value as an average of all the outputs of the component fuzzy systems in order to reduce error accumulation effect.

Video Highlight Prediction Using Multiple Time-Interval Information of Chat and Audio (채팅과 오디오의 다중 시구간 정보를 이용한 영상의 하이라이트 예측)

  • Kim, Eunyul;Lee, Gyemin
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.553-563
    • /
    • 2019
  • As the number of videos uploaded on live streaming platforms rapidly increases, the demand for providing highlight videos is increasing to promote viewer experiences. In this paper, we present novel methods for predicting highlights using chat logs and audio data in videos. The proposed models employ bi-directional LSTMs to understand the contextual flow of a video. We also propose to use the features over various time-intervals to understand the mid-to-long term flows. The proposed Our methods are demonstrated on e-Sports and baseball videos collected from personal broadcasting platforms such as Twitch and Kakao TV. The results show that the information from multiple time-intervals is useful in predicting video highlights.

An Experimental Study on the Sediment Transport Characteristics Through Vertical Lift Gate (연직수문의 퇴적토 배출특성에 관한 실험적 연구)

  • Lee, Ji Haeng;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.276-284
    • /
    • 2018
  • In order to analyze sediment transport characteristics of knickpoint migration, sediment transport length, and sediment transport weight through the under-flow type vertical lift gate, the hydraulic model experiment and dimensional analysis were performed. The correlations between Froude number and sediment transport characteristics were schematized. The multiple regression formulae for sediment transport characteristics with non-dimensional parameters were suggested. The determination coefficients of multiple regression equations appeared high as 0.618 for knickpoint migration, 0.632 for sediment transport length, and 0.866 for sediment transport weight. In order to evaluate the applicability of the developed hydraulic characteristic equations, 95% prediction interval analysis was conducted on the measured and the calculated by multiple regression equations, and it was determined that NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square), and MAPE (mean absolute percentage error) are appropriate, for the accuracy analysis related to the prediction on sediment transport characteristics of kickpoint migration, sediment transport length and weight.

Development of a Diabetic Foot Ulceration Prediction Model and Nomogram (당뇨병성 발궤양 발생 위험 예측모형과 노모그램 개발)

  • Lee, Eun Joo;Jeong, Ihn Sook;Woo, Seung Hun;Jung, Hyuk Jae;Han, Eun Jin;Kang, Chang Wan;Hyun, Sookyung
    • Journal of Korean Academy of Nursing
    • /
    • v.51 no.3
    • /
    • pp.280-293
    • /
    • 2021
  • Purpose: This study aimed to identify the risk factors for diabetic foot ulceration (DFU) to develop and evaluate the performance of a DFU prediction model and nomogram among people with diabetes mellitus (DM). Methods: This unmatched case-control study was conducted with 379 adult patients (118 patients with DM and 261 controls) from four general hospitals in South Korea. Data were collected through a structured questionnaire, foot examination, and review of patients' electronic health records. Multiple logistic regression analysis was performed to build the DFU prediction model and nomogram. Further, their performance was analyzed using the Lemeshow-Hosmer test, concordance statistic (C-statistic), and sensitivity/specificity analyses in training and test samples. Results: The prediction model was based on risk factors including previous foot ulcer or amputation, peripheral vascular disease, peripheral neuropathy, current smoking, and chronic kidney disease. The calibration of the DFU nomogram was appropriate (χ2 = 5.85, p = .321). The C-statistic of the DFU nomogram was .95 (95% confidence interval .93~.97) for both the training and test samples. For clinical usefulness, the sensitivity and specificity obtained were 88.5% and 85.7%, respectively at 110 points in the training sample. The performance of the nomogram was better in male patients or those having DM for more than 10 years. Conclusion: The nomogram of the DFU prediction model shows good performance, and is thereby recommended for monitoring the risk of DFU and preventing the occurrence of DFU in people with DM.

Evaluation of the Potential for the Adulteration Screening of Imported Hay by Near Infrared Reflectance Spectroscopy (근적외선분광법을 이용한 수입건초의 이물질 혼입판정 가능성 평가)

  • Park, Hyung-Soo;Lee, Hyo-Won;Kim, Ji-Hye;Lee, Sang-Hoon;Kim, Jong-Duck
    • Journal of Animal Environmental Science
    • /
    • v.20 no.4
    • /
    • pp.183-188
    • /
    • 2014
  • Near-infrared reflectance spectroscopy (NIRS) was used to study the potential of adulteration of imported forage. Hay samples were prepared two set ; calibration set and validation one. The former were mixed 12 sets from 100% to 50% with Yangcho (Chinese leymus, leymus chinensis Trin.) and the latter were adulterated with 6 set of 8% to 38% in 5% interval. Mixed materials with Yangcho were rice straw, reed and alfalfa. Stand error of prediction (SEP) in calibration equation for alfalfa, reed and rice straw were 0.97, 0.97 and 0.99 also 0.54, 0.86 and 1.26%. Multiple correlation coefficient ($R^2$) for alfalfa, reed and rice straw were 0.99, 0.97 and 0.99. SEP in the same samples were 1.88, 2.15 and 1.49, respectively.