• Title/Summary/Keyword: Multiple Image Representation

Search Result 56, Processing Time 0.028 seconds

X-ray Absorptiometry Image Enhancement using Sparse Representation (Sparse 표현을 이용한 X선 흡수 영상 개선)

  • Kim, Hyungil;Eom, Wonyong;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1205-1211
    • /
    • 2012
  • Recently, the evaluating method of the bone mineral density (BMD) in X-ray absorptiometry image has been studied for the early diagnosis of osteoporosis which is known as a metabolic disease. The BMD, in general, is evaluated by calculating pixel intensity in the bone segmented regions. Accurate bone region extraction is extremely crucial for the BMD evaluation. So, a X-Ray image enhancement is needed to get precise bone segmentation. In this paper, we propose an image enhancement method of X-ray image having multiple noise based sparse representation. To evaluate the performance of proposed method, we employ the contrast to noise ratio (CNR) metric and cut-view graphs visualizing image enhancement performance. Experimental results show that the proposed method outperforms the BayesShrink noise reduction methods and the previous noise reduction method in sparse representation with general noise model.

Afterlife with Image: Life and Death in Portraiture (이미지 속에서 살아남다? 초상화에서의 삶과 죽음)

  • Shin, Seung-Chol
    • The Journal of Art Theory & Practice
    • /
    • no.16
    • /
    • pp.139-174
    • /
    • 2013
  • Pliny the Elder said that multiple cultures agree that the painting began as a shadow trace. A daughter of Butades, the potter in Corinth, traced an outline around a man's shadow, and it was the very beginning of painting. In this anecdote, the profile, i. e. the portrait substitutes body of the absent lover. It makes the absent body present and replaces his place. In this context Hans Belting put the anthropological value to this visual practice. Human being made images to cope actively with the shock of death and the disappearing of body. With the aid of the representation of the bodily presence, the image struggles to resist the death. This paper is a study on the critical meaning of representation in the context of bodily survival by image. The representation is the paradoxical trick of consciousness, an ability to see something as 'there' and 'not there' at the same time. So the connection between image and the body would be suspicious. Although this relation was tight in the ancient shadow painting and the medieval effigies, the modern visual practice forsakes this connection and exposes the trick of representation. It insists that image was not real and even expels the medieval visual practice from the boundary of fine arts. The genealogy of the portraiture is formed by two different visual practices. The belief and the disbelief in the image are observed in the process of representation and anti-representation, and this ambivalence transforms the ontological meaning of portrait in the visual representation.

  • PDF

Error Concealment Based on Multiple Representation for Wireless Transmission of JPEG2000 Image

  • Ou, Yang;Lee, Won-Young;Yang, Tae-Uk;Chee, Sung-Taek;Rhee, Kyung-Hyune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.68-78
    • /
    • 2008
  • The transmission of multimedia information over error-prone channels such as wireless networks has become an important area of research. In this paper, we propose two Error Concealment(EC) schemes for wireless transmission of JPEG2000 image. The Multiple Representation(MR) is employed as the preprocessing in our schemes, whereas the main error concealing operation is applied in wavelet domain at receiver side. The compressed code-stream of several subsampled versions of original image is transmitted over a single channel with random bit errors. In the decoder side, the correctly reconstructed wavelet coefficients are utilized to recover the corrupted coefficients in other sub-images. The recovery is carried out by proposed basic(MREC-BS) or enhanced(MREC-ES) methods, both of which can be simply implemented. Moreover, there is no iterative processing during error concealing, which results a big time saving. Also, the simulation results confirm the effectiveness and efficiency of our proposed schemes.

Enhanced VLAD

  • Wei, Benchang;Guan, Tao;Luo, Yawei;Duan, Liya;Yu, Junqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3272-3285
    • /
    • 2016
  • Recently, Vector of Locally Aggregated Descriptors (VLAD) has been proposed to index image by compact representations, which encodes powerful local descriptors and makes significant improvement on search performance with less memory compared against the state of art. However, its performance relies heavily on the size of the codebook which is used to generate VLAD representation. It indicates better accuracy needs higher dimensional representation. Thus, more memory overhead is needed. In this paper, we enhance VLAD image representation by using two level hierarchical-codebooks. It can provide more accurate search performance while keeping the VLAD size unchanged. In addition, hierarchical-codebooks are used to construct multiple inverted files for more accurate non-exhaustive search. Experimental results show that our method can make significant improvement on both VLAD image representation and non-exhaustive search.

Multiple Description Coding Using Directional Discrete Cosine Transform

  • Lama, Ramesh Kumar;Kwon, Goo-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.293-297
    • /
    • 2013
  • Delivery of high quality video over a wide area network with large number of users poses great challenges for the video communication system. To ensure video quality, multiple descriptions have recently attracted various attention as a way of encoding and visual information delivery over wireless network. We propose a new efficient multiple description coding (MDC) technique. Quincunx lattice sub-sampling is used for generating multiple descriptions of an image. In this paper, we propose the application of a directional discrete cosine transform (DCT) to a sub-sampled quincunx lattice to create an MDC representation. On the decoder side, the image is decoded from the received side information. If all the descriptions arrive successfully, the image is reconstructed by combining the descriptions. However, if only one side description is received, decoding is executed using an interpolation process. The experimental results show that such the directional DCT can achieve a better coding gain as well as energy packing efficiency than the conventional DCT with re-alignment.

H.264 Encoding Technique of Multi-view Image expressed by Layered Depth Image (계층적 깊이 영상으로 표현된 다시점 영상에 대한 H.264 부호화 기술)

  • Kim, Min-Tae;Jee, Inn-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.81-90
    • /
    • 2010
  • This paper presents H.264 coding schemes for multi-view video using the concept of layered depth image(LDI) representation and efficient compression technique for LDI. After converting those data to the proposed representation, we encode color, depth, and auxiliary data representing the hierarchical structure, respectively, Two kinds of preprocessing approaches are proposed for multiple color and depth components. In order to compress auxiliary data, we have employed a near lossless coding method. Finally, we have reconstructed the original viewpoints successfully from the decoded approach that is useful for dealing with multiple color and depth data simultaneously.

Multi-feature local sparse representation for infrared pedestrian tracking

  • Wang, Xin;Xu, Lingling;Ning, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1464-1480
    • /
    • 2019
  • Robust tracking of infrared (IR) pedestrian targets with various backgrounds, e.g. appearance changes, illumination variations, and background disturbances, is a great challenge in the infrared image processing field. In the paper, we address a new tracking method for IR pedestrian targets via multi-feature local sparse representation (SR), which consists of three important modules. In the first module, a multi-feature local SR model is constructed. Considering the characterization of infrared pedestrian targets, the gray and edge features are first extracted from all target templates, and then fused into the model learning process. In the second module, an effective tracker is proposed via the learned model. To improve the computational efficiency, a sliding window mechanism with multiple scales is first used to scan the current frame to sample the target candidates. Then, the candidates are recognized via sparse reconstruction residual analysis. In the third module, an adaptive dictionary update approach is designed to further improve the tracking performance. The results demonstrate that our method outperforms several classical methods for infrared pedestrian tracking.

Research of Matching Performance Improvement for DEM generation from Multiple Images (다중 영상으로부터 DEM 생성을 위한 정합기법의 성능향상 연구)

  • Rhee, Soo-Ahm;Kim, Tae-Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.101-109
    • /
    • 2011
  • This paper describes the attempts to improve the performance of an image matching method for multiple image. Typically, matching between two images is performed by using correlation between a reference and corresponding images. The proposed multiple image matching algorithm performs matching in an object space, chooses the image closest to the true vertical image as a reference image, calculates the correlation based on the chosen reference image. The algorithm also detects occluded regions automatically and keep them from matching. We could find that it is possible to create high quality DEM by this method, regardless of the location of image. From the performance improvement experiments through the occlusion detection, we could confirm the possibility of a more accurate representation of 3D information.

A Study on Color Management of Input and Output Device in Electronic Publishing (I) (전자출판에서 입.출력 장치의 컬러 관리에 관한 연구 (I))

  • Cho, Ga-Ram;Kim, Jae-Hae;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.11-26
    • /
    • 2007
  • In this paper, an experiment was done where the input device used the linear multiple regression and the sRGB color space to perform a color transformation. The output device used the GOG, GOGO and sRGB for the color transformation. After the input device underwent a color transformation, a $3\;{\times}\;20\;size$ matrix was used in a linear multiple regression and the scanner's color representation of scanner was better than a digital still camera's color representation. When using the sRGB color space, the original copy and the output copy had a color difference of 11. Therefore it was more efficient to use the linear multiple regression method than using the sRGB color space. After the input device underwent a color transformation, the additivity of the LCD monitor's R, G and B signal value improved and therefore the error in the linear formula transformation decreased. From this change, the LCD monitor with the GOG model applied to the color transformation became better than LCD monitors with other models applied to the color transformation. Also, the color difference varied more than 11 from the original target in CRT and LCD monitors when a sRGB color transformation was done in restricted conditions.

  • PDF

Finding Line Patterns in Synthesized Image

  • Kim, Jin-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.315-318
    • /
    • 2011
  • The orientation space representation is constructed by treating the orientation parameters, which Gabor filters can be turned, as a continuous variable. The problem of multiple orientation line segmentation is dealt with by thresholding 3D images of the orientation space and then detecting the connected components therein. In this way, X-junctions and T-junctions are able to be separated effectively. Experimental results are presented using synthesized image.