• Title/Summary/Keyword: Multiple Decision Making

Search Result 673, Processing Time 0.028 seconds

Denoising Self-Attention Network for Mixed-type Data Imputation (혼합형 데이터 보간을 위한 디노이징 셀프 어텐션 네트워크)

  • Lee, Do-Hoon;Kim, Han-Joon;Chun, Joonghoon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.11
    • /
    • pp.135-144
    • /
    • 2021
  • Recently, data-driven decision-making technology has become a key technology leading the data industry, and machine learning technology for this requires high-quality training datasets. However, real-world data contains missing values for various reasons, which degrades the performance of prediction models learned from the poor training data. Therefore, in order to build a high-performance model from real-world datasets, many studies on automatically imputing missing values in initial training data have been actively conducted. Many of conventional machine learning-based imputation techniques for handling missing data involve very time-consuming and cumbersome work because they are applied only to numeric type of columns or create individual predictive models for each columns. Therefore, this paper proposes a new data imputation technique called 'Denoising Self-Attention Network (DSAN)', which can be applied to mixed-type dataset containing both numerical and categorical columns. DSAN can learn robust feature expression vectors by combining self-attention and denoising techniques, and can automatically interpolate multiple missing variables in parallel through multi-task learning. To verify the validity of the proposed technique, data imputation experiments has been performed after arbitrarily generating missing values for several mixed-type training data. Then we show the validity of the proposed technique by comparing the performance of the binary classification models trained on imputed data together with the errors between the original and imputed values.

Multi-source information integration framework using self-supervised learning-based language model (자기 지도 학습 기반의 언어 모델을 활용한 다출처 정보 통합 프레임워크)

  • Kim, Hanmin;Lee, Jeongbin;Park, Gyudong;Sohn, Mye
    • Journal of Internet Computing and Services
    • /
    • v.22 no.6
    • /
    • pp.141-150
    • /
    • 2021
  • Based on Artificial Intelligence technology, AI-enabled warfare is expected to become the main issue in the future warfare. Natural language processing technology is a core technology of AI technology, and it can significantly contribute to reducing the information burden of underrstanidng reports, information objects and intelligences written in natural language by commanders and staff. In this paper, we propose a Language model-based Multi-source Information Integration (LAMII) framework to reduce the information overload of commanders and support rapid decision-making. The proposed LAMII framework consists of the key steps of representation learning based on language models in self-supervsied way and document integration using autoencoders. In the first step, representation learning that can identify the similar relationship between two heterogeneous sentences is performed using the self-supervised learning technique. In the second step, using the learned model, documents that implies similar contents or topics from multiple sources are found and integrated. At this time, the autoencoder is used to measure the information redundancy of the sentences in order to remove the duplicate sentences. In order to prove the superiority of this paper, we conducted comparison experiments using the language models and the benchmark sets used to evaluate their performance. As a result of the experiment, it was demonstrated that the proposed LAMII framework can effectively predict the similar relationship between heterogeneous sentence compared to other language models.

Is Mr. AI more responsible? The effect of anthropomorphism in the moral judgement toward AI's decision making (AI의 의사결정에 대한 도덕판단에서 의인화가 미치는 영향 - 쌍 도덕 이론을 중심으로 -)

  • Yoon-Bin, Choi;Dayk, Jang
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.4
    • /
    • pp.169-203
    • /
    • 2022
  • As artificial intelligence (AI) technology advances, the number of cases in which AI becomes an object or subject of moral judgment is increasing, and this trend is expected to accelerate. Although the area of AI in human society expands, relatively few studies have been conducted on how people perceive and respond to AI. Three studies examined the effect of the anthropomorphism of AI on its responsibility. We predicted that anthropomorphism would increase the responsibility perception, and perceived agency and perceived patiency for AI would mediate this effect. Although the manipulation was not effective, multiple analyses confirmed the indirect effect of perceived patiency. In contrast, the effect of perceived agency of AI was somewhat mixed, which makes the hypothesis partially supported by the overall result. This result shows that for the moral status of artificial agents, perceived patiency is relatively more critical than perceived agency. These results support the organic perspective on the moral status that argues the importance of patiency, and show that patiency is more important than agency in the anthropomorphism related study of AI and robots.

Integrated Sensing Module for Environmental Information Acquisition on Construction Site (건설현장 환경정보 수집을 위한 통합 센싱모듈 개발)

  • Moon, Seonghyeon;Lee, Gitaek;Hwang, Jaehyun;Chi, Seokho;Won, Daeyoun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.85-93
    • /
    • 2024
  • The monitoring of environmental information (e.g. noise, dust, vibration, temperature, humidity) is crucial to the safe and sustainable operation of a construction site. However, commercial sensors exhibit certain drawbacks when applied on-site. First, the installation cost is prohibitively high. Second, these sensors have been engineered without considering the rugged and harsh conditions of a construction site, resulting in error-prone sensing. Third, construction sites are compelled to allocate additional resources in terms of manpower, expenses, and physical spaces to accommodate individual sensors. This research developed an integrated sensing module to measure the environmental information in construction site. The sensing module slashes the installation cost to 3.3%, is robust enough to harsh and outdoor sites, and consolidates multiple sensors into a single unit. The sensing module also supports GPS, LTE, and real-time sensing. The evaluation showed remarkable results including 97.5% accuracy and 99.9% precision in noise measurement, an 89.7% accuracy in dust measurement, and a 93.5% reliability in data transmission. This research empowers the collection of substantial volumes and high-quality environmental data from construction sites, providing invaluable support to decision-making process. These encompass objective regulatory compliance checking, simulations of environmental data dispersion, and the development of environmental mitigation strategies.

The Effect of Online Multiple Channel Marketing by Device Type (디바이스 유형을 고려한 온라인 멀티 채널 마케팅 효과)

  • Hajung Shin;Kihwan Nam
    • Information Systems Review
    • /
    • v.20 no.4
    • /
    • pp.59-78
    • /
    • 2018
  • With the advent of the various device types and marketing communication, customer's search and purchase behavior have become more complex and segmented. However, extant research on multichannel marketing effects of the purchase funnel has not reflected the specific features of device User Interface (UI) and User Experience (UX). In this study, we analyzed the marketing channel effects of multi-device shoppers using a unique click stream dataset from global online retailers. We examined device types that activate online shopping and compared the differences between marketing channels that promote visits. In addition, we estimated the direct and indirect effects on visits and purchase revenue through customer's accumulated experience and channel conversions. The findings indicate that the same customer selects a different marketing channel according to the device selection. These results can help retailers gain a better understanding of customers' decision-making process in multi-marketing channel environment and devise the optimal strategy taking into account various device types. Our empirical analyses yield business implications based on the significant results from global big data analytics and contribute academically meaningful theoretical framework using an economic model. We also provide strategic insights attributed to the practical value of an online marketing manager.

A Study on the Development of integrated Process Safety Management System based on Artificial Intelligence (AI) (인공지능(AI) 기반 통합 공정안전관리 시스템 개발에 관한 연구)

  • KyungHyun Lee;RackJune Baek;WooSu Kim;HeeJeong Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.403-409
    • /
    • 2024
  • In this paper, the guidelines for the design of an Artificial Intelligence(AI) based Integrated Process Safety Management(PSM) system to enhance workplace safety using data from process safety reports submitted by hazardous and risky facility operators in accordance with the Occupational Safety and Health Act is proposed. The system composed of the proposed guidelines is to be implemented separately by individual facility operators and specialized process safety management agencies for single or multiple workplaces. It is structured with key components and stages, including data collection and preprocessing, expansion and segmentation, labeling, and the construction of training datasets. It enables the collection of process operation data and change approval data from various processes, allowing potential fault prediction and maintenance planning through the analysis of all data generated in workplace operations, thereby supporting decision-making during process operation. Moreover, it offers utility and effectiveness in time and cost savings, detection and prediction of various risk factors, including human errors, and continuous model improvement through the use of accurate and reliable training data and specialized datasets. Through this approach, it becomes possible to enhance workplace safety and prevent accidents.

Research on Optimization Strategies for Random Forest Algorithms in Federated Learning Environments (연합 학습 환경에서의 랜덤 포레스트 알고리즘 최적화 전략 연구)

  • InSeo Song;KangYoon Lee
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.101-113
    • /
    • 2024
  • Federated learning has garnered attention as an efficient method for training machine learning models in a distributed environment while maintaining data privacy and security. This study proposes a novel FedRFBagging algorithm to optimize the performance of random forest models in such federated learning environments. By dynamically adjusting the trees of local random forest models based on client-specific data characteristics, the proposed approach reduces communication costs and achieves high prediction accuracy even in environments with numerous clients. This method adapts to various data conditions, significantly enhancing model stability and training speed. While random forest models consist of multiple decision trees, transmitting all trees to the server in a federated learning environment results in exponentially increasing communication overhead, making their use impractical. Additionally, differences in data distribution among clients can lead to quality imbalances in the trees. To address this, the FedRFBagging algorithm selects only the highest-performing trees from each client for transmission to the server, which then reselects trees based on impurity values to construct the optimal global model. This reduces communication overhead and maintains high prediction performance across diverse data distributions. Although the global model reflects data from various clients, the data characteristics of each client may differ. To compensate for this, clients further train additional trees on the global model to perform local optimizations tailored to their data. This improves the overall model's prediction accuracy and adapts to changing data distributions. Our study demonstrates that the FedRFBagging algorithm effectively addresses the communication cost and performance issues associated with random forest models in federated learning environments, suggesting its applicability in such settings.

A Study on the Representation and Archive Effect of Political and Social Responsibility through Records: Focusing on the Fact-finding and Investigation Records of "Ssangyong Motors Strike" Case (기록을 통한 정치·사회적 책무의 재현과 아카이브 효과에 관한 연구 쌍용자동차 사건 진상규명 및 조사 기록을 중심으로)

  • Choi, YunJin
    • The Korean Journal of Archival Studies
    • /
    • no.82
    • /
    • pp.173-229
    • /
    • 2024
  • An archive is a "representation of actions and activities" that bears different effects depending on its purpose and intention. Also, various archival practices reinforce the political nature of the archive including the subject's purpose and intention. Such effects are not confined to a single event and its records but extend to broader society through interactions. This process is demonstrated more significantly in social conflicts in which stakeholders archive their actions and decision-making process as they compete with other parties. This study examines such archive politics through a case study of the "Ssangyong Motors Strike" in 2009. In "Ssangyong Motors Strike", multiple stakeholders vigorously produced records that reflected each subject's perspective, purpose, and intention throughout the lifespan of the event-prior to, during, and after the primary incident. This article pays particular attention to two archive cases from ex-post investigation and fact-finding processes. One was produced by the Special Investigation TF of Seoul Bar Association and the other by the Korean National Police Agency's Fact-finding Committee of Human Rights Violations. The two cases illustrate the concept of archive effect and the representation of political and social accountability through archiving. This study argues that archives and archival practices induced by the Ssangyong Motors Incident had extended archive effects leading to communal restoration, healing, and social progress beyond the resolution of the immediate conflict and problems.

Synthetic Data Generation with Unity 3D and Unreal Engine for Construction Hazard Scenarios: A Comparative Analysis

  • Aqsa Sabir;Rahat Hussain;Akeem Pedro;Mehrtash Soltani;Dongmin Lee;Chansik Park;Jae- Ho Pyeon
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.1286-1288
    • /
    • 2024
  • The construction industry, known for its inherent risks and multiple hazards, necessitates effective solutions for hazard identification and mitigation [1]. To address this need, the implementation of machine learning models specializing in object detection has become increasingly important because this technological approach plays a crucial role in augmenting worker safety by proactively recognizing potential dangers on construction sites [2], [3]. However, the challenge in training these models lies in obtaining accurately labeled datasets, as conventional methods require labor-intensive labeling or costly measurements [4]. To circumvent these challenges, synthetic data generation (SDG) has emerged as a key method for creating realistic and diverse training scenarios [5], [6]. The paper reviews the evolution of synthetic data generation tools, highlighting the shift from earlier solutions like Synthpop and Data Synthesizer to advanced game engines[7]. Among the various gaming platforms, Unity 3D and Unreal Engine stand out due to their advanced capabilities in replicating realistic construction hazard environments [8], [9]. Comparing Unity 3D and Unreal Engine is crucial for evaluating their effectiveness in SDG, aiding developers in selecting the appropriate platform for their needs. For this purpose, this paper conducts a comparative analysis of both engines assessing their ability to create high-fidelity interactive environments. To thoroughly evaluate the suitability of these engines for generating synthetic data in construction site simulations, the focus relies on graphical realism, developer-friendliness, and user interaction capabilities. This evaluation considers these key aspects as they are essential for replicating realistic construction sites, ensuring both high visual fidelity and ease of use for developers. Firstly, graphical realism is crucial for training ML models to recognize the nuanced nature of construction environments. In this aspect, Unreal Engine stands out with its superior graphics quality compared to Unity 3D which typically considered to have less graphical prowess [10]. Secondly, developer-friendliness is vital for those generating synthetic data. Research indicates that Unity 3D is praised for its user-friendly interface and the use of C# scripting, which is widely used in educational settings, making it a popular choice for those new to game development or synthetic data generation. Whereas Unreal Engine, while offering powerful capabilities in terms of realistic graphics, is often viewed as more complex due to its use of C++ scripting and the blueprint system. While the blueprint system is a visual scripting tool that does not require traditional coding, it can be intricate and may present a steeper learning curve, especially for those without prior experience in game development [11]. Lastly, regarding user interaction capabilities, Unity 3D is known for its intuitive interface and versatility, particularly in VR/AR development for various skill levels. In contrast, Unreal Engine, with its advanced graphics and blueprint scripting, is better suited for creating high-end, immersive experiences [12]. Based on current insights, this comparative analysis underscores the user-friendly interface and adaptability of Unity 3D, featuring a built-in perception package that facilitates automatic labeling for SDG [13]. This functionality enhances accessibility and simplifies the SDG process for users. Conversely, Unreal Engine is distinguished by its advanced graphics and realistic rendering capabilities. It offers plugins like EasySynth (which does not provide automatic labeling) and NDDS for SDG [14], [15]. The development complexity associated with Unreal Engine presents challenges for novice users, whereas the more approachable platform of Unity 3D is advantageous for beginners. This research provides an in-depth review of the latest advancements in SDG, shedding light on potential future research and development directions. The study concludes that the integration of such game engines in ML model training markedly enhances hazard recognition and decision-making skills among construction professionals, thereby significantly advancing data acquisition for machine learning in construction safety monitoring.

Analysis and Evaluation of Frequent Pattern Mining Technique based on Landmark Window (랜드마크 윈도우 기반의 빈발 패턴 마이닝 기법의 분석 및 성능평가)

  • Pyun, Gwangbum;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.15 no.3
    • /
    • pp.101-107
    • /
    • 2014
  • With the development of online service, recent forms of databases have been changed from static database structures to dynamic stream database structures. Previous data mining techniques have been used as tools of decision making such as establishment of marketing strategies and DNA analyses. However, the capability to analyze real-time data more quickly is necessary in the recent interesting areas such as sensor network, robotics, and artificial intelligence. Landmark window-based frequent pattern mining, one of the stream mining approaches, performs mining operations with respect to parts of databases or each transaction of them, instead of all the data. In this paper, we analyze and evaluate the techniques of the well-known landmark window-based frequent pattern mining algorithms, called Lossy counting and hMiner. When Lossy counting mines frequent patterns from a set of new transactions, it performs union operations between the previous and current mining results. hMiner, which is a state-of-the-art algorithm based on the landmark window model, conducts mining operations whenever a new transaction occurs. Since hMiner extracts frequent patterns as soon as a new transaction is entered, we can obtain the latest mining results reflecting real-time information. For this reason, such algorithms are also called online mining approaches. We evaluate and compare the performance of the primitive algorithm, Lossy counting and the latest one, hMiner. As the criteria of our performance analysis, we first consider algorithms' total runtime and average processing time per transaction. In addition, to compare the efficiency of storage structures between them, their maximum memory usage is also evaluated. Lastly, we show how stably the two algorithms conduct their mining works with respect to the databases that feature gradually increasing items. With respect to the evaluation results of mining time and transaction processing, hMiner has higher speed than that of Lossy counting. Since hMiner stores candidate frequent patterns in a hash method, it can directly access candidate frequent patterns. Meanwhile, Lossy counting stores them in a lattice manner; thus, it has to search for multiple nodes in order to access the candidate frequent patterns. On the other hand, hMiner shows worse performance than that of Lossy counting in terms of maximum memory usage. hMiner should have all of the information for candidate frequent patterns to store them to hash's buckets, while Lossy counting stores them, reducing their information by using the lattice method. Since the storage of Lossy counting can share items concurrently included in multiple patterns, its memory usage is more efficient than that of hMiner. However, hMiner presents better efficiency than that of Lossy counting with respect to scalability evaluation due to the following reasons. If the number of items is increased, shared items are decreased in contrast; thereby, Lossy counting's memory efficiency is weakened. Furthermore, if the number of transactions becomes higher, its pruning effect becomes worse. From the experimental results, we can determine that the landmark window-based frequent pattern mining algorithms are suitable for real-time systems although they require a significant amount of memory. Hence, we need to improve their data structures more efficiently in order to utilize them additionally in resource-constrained environments such as WSN(Wireless sensor network).