• Title/Summary/Keyword: Multiple Carrier

Search Result 500, Processing Time 0.024 seconds

A Study on Radio Resource Management for Multi-cell SC-FDMA Systems (다중셀 SC-FDMA를 위한 무선자원 관리기법에 관한연구)

  • Chung, Yong-Joo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.4
    • /
    • pp.7-15
    • /
    • 2010
  • This study proposes a rad o resource management scheme to maximize the performance of the LTE(Long Term Evolution) uplink, using SC-FDMA(Single Carrier-Frequency Division Multiple Access). Rather than the single-cell SC-FDMA system the existing studies are mainly concerning, this study focuses on multi-cell system which needs considering the interaction among cells. Radio resource management is divided into two phases, planning and operation phases. The former is for the master eNB(e-NodeB) to allocate RBs(radio bearer) to eNB, the latter for eNB to assign RBs to the mobiles in the cell. For each phase, an optimization model and greedy algorithm are proposed. Optimization models aim to maximize the system performance while satisfying the constraints for both QoS and RB continuity. The greedy algorithms, like generic ones, move from a solution to a neighboring one having the best objective value among neighboring ones. From the numerous numerical experiments, the performance and characteristics of the algorithms are analyzed. This study is expected to play a volunteering role in radio resource management for the multi-cell SC-FDMA system.

Novel Turbo Receiver for MU-MIMO SC-FDMA System

  • Wang, Hung-Sheng;Ueng, Fang-Biau;Chang, Yu-Kuan
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.309-317
    • /
    • 2018
  • Single carrier-frequency-division multiple access (SC-FDMA) has been adopted as the uplink transmission standard in fourth-generation cellular networks to facilitate power efficiency transmission in mobile stations. Because multiuser multiple-input multiple-output (MU-MIMO) is a promising technology employed to fully exploit the channel capacity in mobile radio networks, this study investigates the uplink transmission of MU-MIMO SC-FDMA systems with orthogonal space-frequency block codes (SFBCs). It is preferable to minimize the length of the cyclic prefix (CP). In this study, the chained turbo equalization technique with chained turbo estimation is employed in the designed receiver. Chained turbo estimation employs a short training sequence to improve the spectrum efficiency without compromising the estimation accuracy. In this paper, we propose a novel and spectrally efficient iterative joint-channel estimation, multiuser detection, and turbo equalization for an MU-MIMO SC-FDMA system without CP-insertion and with short TR. Some simulation examples are presented for the uplink scenario to demonstrate the effectiveness of the proposed scheme.

Assessment of Coal Combustion Safety of DTF using Response Surface Method (반응표면법을 이용한 DTF의 석탄 연소 안전성 평가)

  • Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.8-13
    • /
    • 2015
  • The experimental design methodology was applied in the drop tube furnace (DTF) to predict the various combustion properties according to the operating conditions and to assess the coal plant safety. Response surface method (RSM) was introduced as a design of experiment, and the database for RSM was set with the numerical simulation of DTF. The dependent variables such as burnout ratios (BOR) of coal and $CO/CO_2$ ratios were mathematically described as a function of three independent variables (coal particle size, carrier gas flow rate, wall temperature) being modeled by the use of the central composite design (CCD), and evaluated using a second-order polynomial multiple regression model. The prediction of BOR showed a high coefficient of determination (R2) value, thus ensuring a satisfactory adjustment of the second-order polynomial multiple regression model with the simulation data. However, $CO/CO_2$ ratio had a big difference between calculated values and predicted values using conventional RSM, which might be mainly due to the dependent variable increses or decrease very steeply, and hence the second order polynomial cannot follow the rates. To relax the increasing rate of dependent variable, $CO/CO_2$ ratio was taken as common logarithms and worked again with RSM. The application of logarithms in the transformation of dependent variables showed that the accuracy was highly enhanced and predicted the simulation data well.

Resource allocation in downlink SWIPT-based cooperative NOMA systems

  • Wang, Longqi;Xu, Ding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.20-39
    • /
    • 2020
  • This paper considers a downlink multi-carrier cooperative non-orthogonal multiple access (NOMA) transmission, where no direct link exists between the far user and the base station (BS), and the communication between them only relies on the assist of the near user. Firstly, the BS sends a superimposed signal of the far and the near user to the near user, and then the near user adopts simultaneous wireless information and power transfer (SWIPT) to split the received superimposed signal into two portions for energy harvesting and information decoding respectively. Afterwards, the near user forwards the signal of the far user by utilizing the harvested energy. A minimum data is required to ensure the quality of service (QoS) of the far user. We jointly optimize power allocation, subcarrier allocation, time allocation, the power allocation (PA) coefficient and the power splitting (PS) ratio to maximize the number of data bits received at the near user under the energy causality constraint, the minimum data constraint and the transmission power constraint. The block-coordinate descent method and the Lagrange duality method are used to obtain a suboptimal solution of this optimization problem. In the final simulation results, the superiority of the proposed NOMA scheme is confirmed compared with the benchmark NOMA schemes and the orthogonal multiple access (OMA) scheme.

Multiple-Training LMS based Decision Feedback Equalizer with Soft Decision Feedback (연판정 귀환을 갖는 다중 훈련 LMS 기반의 결정 재입력 등화기)

  • Choi Yun-Seok;Park Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.473-479
    • /
    • 2005
  • A key issue toward mobile multimedia communications is to create technologies for broadband signal transmission that ran support high quality services. Such a broadband mobile communications system should be able to overcome severe distortion caused by time-varying multi-path fading channel, while providing high spectral efficiency and low power consumption. For these reasons, an adaptive suboptimum decision feedback equalize. (DFE) for the single-carrier short-burst transmissions system is considered as one of the feasible solutions. For the performance improvement of the system with the short-burst format including the short training sequence, in this paper, the multiple-training least mean square (MTLMS) based DFE scheme with soft decision feedback is proposed and its performance is investigated in mobile wireless channels throughout computer simulation.

Game-Theoretic Analysis of Selfish Secondary Users in Cognitive Radio Networks

  • Kahsay, Halefom;Jembre, Yalew Zelalem;Choi, Young-June
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.440-448
    • /
    • 2015
  • In this paper, we study the problem of selfish behavior of secondary users (SUs) based on cognitive radio (CR) with the presence of primary users (PUs). SUs are assumed to contend on a channel using the carrier sense multiple access with collision avoidance (CSMA/CA) and PUs do not consider transmission of SUs, where CSMA/CA protocols rely on the random deference of packets. SUs are vulnerable to selfish attacks by which selfish users could pick short random deference to obtain a larger share of the available bandwidth at the expense of other SUs. In this paper, game theory is used to study the systematic cheating of SUs in the presence of PUs in multichannel CR networks. We study two cases: A single cheater and multiple cheaters acting without any restraint. We identify the Pareto-optimal point of operation of a network with multiple cheaters and also derive the Nash equilibrium of the network. We use cooperative game theory to drive the Pareto optimality of selfish SUs without interfering with the activity of PUs. We show the influence of the activity of PUs in the equilibrium of the whole network.

A Performance Analysis of CSMA in Wireless Networks Based on MIL-STD-188-220 (MIL-STD-188-220기반 무선네트워크의 CSMA 성능분석)

  • Seo, NanSol;Joo, JaeWoo;Jang, DohngWoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.11
    • /
    • pp.1129-1137
    • /
    • 2012
  • The wireless link of tactical datalink system provides a communication network to share digitalized tactical data in real-time. Also MAC(Multiple Access Control) of this system is subject to TDMA or CSMA according to a operated circumstance of target nodes to exchange the data reliably. In this paper, we verify the operability when we use CSMA scheme based on MIL-STD-188-220 in tactical datalink system which is basically designed with TDMA, and provide a mathematical analysis scheme to verify the operability and performance. Finally, by implementing CSMA scheme to a tactical datalink equipment we obtain practical results which can be compared with theoretical results.

Design of MTLMS based Decision Feedback Equalizer (MTLMS 기반의 결정귀환 등화기의 설계)

  • Choi Yun-Seok;Park Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.950-953
    • /
    • 2006
  • A key issue toward mobile multimedia communications is to create technologies for broadband signal transmission that can support high quality services. Such a broadband mobile communications system should be able to overcome severe distortion caused by time-varying multi-path fading channel, while providing high spectral efficiency and low power consumption. For these reasons, an adaptive suboptimum decision feedback equalizer (DFE) for the single-carrier short-burst transmissions system is considered as one of the feasible solutions. For the performance improvement of the system with the short-burst format including the short training sequence, in this paper, the multiple-training least mean square (MTLMS) based DFE scheme with soft decision feedback is proposed and its performance is investigated in mobile wireless channels throughout computer simulation.

  • PDF

Joint Detection Method for Non-orthogonal Multiple Access System Based on Linear Precoding and Serial Interference Cancellation

  • Li, Jianpo;Wang, Qiwei
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.933-946
    • /
    • 2021
  • In the non-orthogonal multiple access (NOMA) system, multiple user signals on the single carrier are superimposed in a non-orthogonal manner, which results in the interference between non-orthogonal users and noise interference in the channel. To solve this problem, an improved algorithm combining regularized zero-forcing (RZF) precoding with minimum mean square error-serial interference cancellation (MMSE-SIC) detection is proposed. The algorithm uses RZF precoding combined with successive over-relaxation (SOR) method at the base station to preprocess the source signal, which can balance the effects of non-orthogonal inter-user interference and noise interference, and generate a precoded signal suitable for transmission in the channel. At the receiver, the MMSE-SIC detection algorithm is used to further eliminate the interference in the signal for the received superimposed signal, and reduce the calculation complexity through the QR decomposition of the matrix. The simulation results show that the proposed joint detection algorithm has good applicability to eliminate the interference of non-orthogonal users, and it has low complexity and fast convergence speed. Compared with other traditional method, the improved method has lower error rate under different signal-to-interference and noise ratio (SINR).

Low complexity ordered successive interference cancelation detection algorithm for uplink MIMO SC-FDMA system

  • Nalamani G. Praveena;Kandasamy Selvaraj;David Judson;Mahalingam Anandaraj
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.899-909
    • /
    • 2023
  • In mobile communication, the most exploratory technology of fifth generation is massive multiple input multiple output (MIMO). The minimum mean square error and zero forcing based linear detectors are used in multiuser detection for MIMO single-carrier frequency division multiple access (SCFDMA). When the received signal is detected and regularization sequence is joined in the equalization of spectral null amplification, these schemes experience an error performance and the signal detection assesses an inversion of a matrix computation that grows into complexity. Ordered successive interference cancelation (OSIC) detection is considered for MIMO SC-FDMA, which uses a posteriori information to eradicate these problems in a realistic environment. To cancel the interference, sorting is preferred based on signal-to-noise ratio and log-likelihood ratio. The distinctiveness of the methodology is to predict the symbol with the lowest error probability. The proposed work is compared with the existing methods, and simulation results prove that the defined algorithm outperforms conventional detection methods and accomplishes better performance with lower complication.