본 논문에서는 가상 터치방식에서 다중 터치를 인식하는 방법에 대해 제안한다. 가상 터치는 물리적 터치 방법에 비교하여 간단한 깊이 카메라만을 설치하고, 객체 깊이값과 배경의 깊이값의 차이만으로 정확하게 객체를 추출하는 방법으로 저비용으로 구현할 수 있는 장점이 있다. 하지만 다중 터치를 구현함에는 정확도가 떨어지는 문제점이 있다. 본 논문에서는 다중 객체 인식을 위한 이진화, 라벨링, 객체 추적의 알고리즘을 통하여 다중 터치의 정확도를 높이는 방법을 제안한다. 모의실험을 바탕으로 다양한 다중 터치 이벤트를 제공함을 보여준다.
이동중인 차량에 카메라를 설치하여 주행 중에 정지 또는 주행중인 자동차의 영상을 획득하여, 이를 인식하는 시스템을 제안한다. 주행 중에 획득한 영상에서 번호판 영역을 추출하기 위하여, 번호판 영역에서 나타나는 강한 수직 에지 성분을 이용하여 번호판 후보 영역들을 찾고 이진화 된 영상에서의 배경과 문자의 구성비를 따져 번호판 영역을 추출하는 방법을 사용한다. 자동차 번호판 인식을 위하여 다중 클래스 인식을 지원하는 SVM과 모듈라 신경망 인식 성능을 비교하였으며, 인식률을 높이기 위하여 SVM을 모듈라 신경망과 결합하여 다중 클래스 분류기로 확장하는 방법을 제안하고 실험하였다. 실험결과, 제안하는 분류기를 이용한 방법이 번호판 인식에 우수한 성능을 보임을 확인하였다.
본 논문에서는 쿠다(CUDA)를 사용하여 GPU 리소스를 분배하는 지능형 얼굴 인식 및 트래킹 시스템을 제안한다. 제안한 시스템은 GPU 리소스를 최적의 상태로 분배하는 GPU 할당 알고리즘, 딥러닝을 이용한 얼굴 영역 검출, 딥러닝을 이용한 얼굴 인식, 실시간 얼굴 트래킹, PTZ 카메라 제어 등의 5단계로 구성되어진다. 멀티 GPU 리소스를 최적의 상태로 분배하는 GPU 할당 알고리즘은 고정적으로 스레드에 GPU를 할당하는 방식과 달리 GPU의 활성화 정도에 따라 유동적으로 GPU 리소스를 분배한다. 따라서 안정적이고 효율적인 멀티 GPU 사용을 가능하게 하는 특징이 있다. 제안된 시스템에 대한 성능을 평가하기 위하여 리소스 분배를 하지 않은 시스템과 제안한 시스템을 비교한 결과, 리소스를 분배하지 않은 시스템은 불안정한 동작을 보이는 반면에 제안한 시스템에서는 안정적으로 구동됨으로서 효율적인 리소스 사용을 보였다. 따라서 제안된 시스템의 효용성이 입증되었다.
In this paper, we present a robust method for detecting other vehicles from n forward-looking CCD camera in a moving vehicle. This system uses edge and shape information to detect other vehicles. The algorithm consists of three steps: lane detection, ehicle candidate generation, and vehicle verification. First after detecting a lane from the template matching method, we divide the road into three parts: left lane, front lane, and right lane. Second, we set the region of interest (ROI) using the lane position information and extract a vehicle candidate from the ROI. Third, we use local orientation coding (LOC) edge image of the vehicle candidate as input to a pretrained neural network for vehicle recognition. Experimental results from highway scenes show the robustness and effectiveness of this method.
This paper is pre-stage for getting EGI which can be used for modeling of an object. It discusses the construction of the vision processing system and its algorithm for getting needle diagram from tie object image. We realize the algorithm with monocular camera system, using Reflectance Map theory and photometric stereo method. We can calculate the surface normal at any point in the image if we take multiple images at the different lighting conditions. From the 3 images taken from different lighting conditions through the experiment, we get the needle diagrams of the sphere and the object. We confirm the validness of the surface, normal acquisition algorithm comparing the experimental needle diagram with the ideal one obtained from the surface normal of the known object.
Video stabilization is an important image enhancement widely used in surveillance system in order to improve recognition performance. Most previous methods calculate inter-frame homography to estimate global motion. These methods are relatively slow and suffer from significant depth variations or multiple moving object. In this paper, we propose a fast and practical approach for video stabilization that selects the most reliable key frame as a reference frame to a current frame. We use optical flow to estimate global motion within an adaptively selected region of interest in static camera environment. Optimal global motion is found by probabilistic voting in the space of optical flow. Experiments show that our method can perform real-time video stabilization validated by stabilized images and remarkable reduction of mean color difference between stabilized frames.
건설업은 업무상 재해 발생빈도와 사망자 수가 다른 산업군에 비해 높아 가장 위험한 산업군으로 불린다. 정부는 건설 현장에서 발생하는 산업 재해를 줄이고 예방하기 위해 CCTV 설치 의무화를 발표했다. 건설 현장의 안전 관리자는 CCTV 관제를 통해 현장의 잠재된 위험성을 찾아 제거하고 재해를 예방한다. 하지만 장시간 관제 업무는 피로도가 매우 높아 중요한 상황을 놓치는 경우가 많다. 따라서 본 연구는 딥러닝 기반 컴퓨터 비전 모형 중 개체 분할인 YOLACT와 다중 객체 추적 기법인 SORT을 적용하여 다중 클래스 다중 객체 추적 시스템을 개발하였다. 건설 현장에서 촬영한 영상으로 제안한 방법론의 성능을 MS COCO와 MOT 평가지표로 평가하였다. SORT는 YOLACT의 의존성이 높아서 작은 객체가 적은 데이터셋을 학습한 모형의 성능으로 먼 거리의 물체를 추적하는 성능이 떨어지지만, 크기가 큰 객체에서 뛰어난 성능을 나타냈다. 본 연구로 인해 딥러닝 기반 컴퓨터 비전 기법들의 안전 관제 업무에 보조 역할로 업무상 재해를 예방할 수 있을 것으로 판단된다.
최근의 자동차 기술이 기계적 장치 위주에서 전장부품 특히, 차량의 안전 및 편의 기술로서 발전되고 있어서, 추후 자동차의 경쟁력은 에너지 효율성문제와 안전편의 기술의 적용에 의해 그 경쟁력이 결정될 것으로 판단된다. 본 연구에서는 자동차 운전자 졸림의 검지하기 위한 각종 기술을 소개하고 상용화된 기술의 장단점을 비교하여서, 이의 문제점을 해결하기 위한 복합 센싱기술을 소개한다. 기존의 카메라에 의한 눈동자인식을 기반으로한 직접적인 졸림검지와 운전자의 생체신호를 검출하여 간접적으로 스트레스, 피로도, 졸림을 검출하는 방법을 결합하여, 보다 정확도가 높은 졸림검지가 가능한 알고리즘을 개발하였다.
This paper proposes a novel localization algorithm based on ego-motion which used Lucas-Kanade Optical Flow and warping image obtained through fish-eye lenses mounted on the robots. The omnidirectional image sensor is a desirable sensor for real-time view-based recognition of a robot because the all information around the robot can be obtained simultaneously. The preprocessing (distortion correction, image merge, etc.) of the omnidirectional image which obtained by camera using reflect in mirror or by connection of multiple camera images is essential because it is difficult to obtain information from the original image. The core of the proposed algorithm may be summarized as follows: First, we capture instantaneous $360^{\circ}$ panoramic images around a robot through fish-eye lenses which are mounted in the bottom direction. Second, we extract motion vectors using Lucas-Kanade Optical Flow in preprocessed image. Third, we estimate the robot position and angle using ego-motion method which used direction of vector and vanishing point obtained by RANSAC. We confirmed the reliability of localization algorithm using ego-motion based on fisheye warping image through comparison between results (position and angle) of the experiment obtained using the proposed algorithm and results of the experiment measured from Global Vision Localization System.
본 논문은 전 방향을 감시할 수 있는 Pan-Tilt-Zoom(PTZ) 카메라를 이용한 파노라마 배경 생성과 객체 추적 방법을 제안한다. 제안된 방법은 연속되는 두 영상의 외곽 영역에서 미리 정한 지역만 위상정합(phase correlation)을 하여 카메라의 지역 움직임을 빠르게 추정하고 벡터 양자화를 통하여 움직임 추정 오차를 최소화 한다. 추정된 움직임 값을 이용하여 겹침 영역이 존재하는 영상들을 획득하여 실린더에 투영시키고 영상을 재 정렬함으로써 파노라마 배경 영상을 생성할 수 있다. 객체 추적은 미리 생성된 파노라마 배경과 입력 영상의 차분 방법을 이용하여 배경과 객체를 분리하고 객체의 움직임을 추적한다. 제안된 객체 추적 방법은 PTZ 카메라를 이용하여 빠르고 안정적인 배경 생성이 가능하고, 전방향의 객체를 지속적으로 추적하는 것이 가능하다. 제안된 방법은 실시간 처리가 가능하며 넓은 감시 지역에서 객체의 형태를 추적하거나 얼굴인식과 같은 분야에서 이용될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.