• Title/Summary/Keyword: Multiple Biometric Information

Search Result 33, Processing Time 0.039 seconds

FIDO Platform of Passwordless Users based on Multiple Biometrics for Secondary Authentication (암호 없는 사용자의 2차 인증용 복합생체 기반의 FIDO 플랫폼)

  • Kang, Min-goo
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.65-72
    • /
    • 2022
  • In this paper, a zero trust-based complex biometric authentication was proposed in a passwordless environment. The linkage of FIDO 2.0 (Fast IDENTITY Online) transaction authentication platforms was designed in conjunction with metaverse. In particular, it was applied with the location information of a smart terminal according to a geomagnetic sensor, an accelerator sensor, and biometric information for multi-factor authentication(MFA). At this time, a FIDO transaction authentication platform was presented for adaptive complex authentication with user's environment through complex authentication with secondary authentication based on situational awareness such as illuminance and temperature/humidity. As a result, it is possible to authenticate secondary users based on zero trust with behavior patterns such as fingerprint recognition, iris recognition, face recognition, and voice according to the environment. In addition, it is intended to check the linkage result of the FIDO platform for complex integrated authentication and improve the authentication accuracy of the linkage platform for transaction authentication using FIDO2.0.

Boundary Stitching Algorithm for Fusion of Vein Pattern (정맥패턴 융합을 위한 Boundary Stitching Algorithm)

  • Lim, Young-Kyu;Jang, Kyung-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.521-524
    • /
    • 2005
  • This paper proposes a fusion algorithm which merges multiple vein pattern images into a single image, larger than those images. As a preprocessing step of template matching, during the verification of biometric data such as fingerprint image, vein pattern image of hand, etc., the fusion technique is used to make reference image larger than the candidate images in order to enhance the matching performance. In this paper, a new algorithm, called BSA (Boundary Stitching Algorithm) is proposed, in which the boundary rectilinear parts extracted from the candidate images are stitched to the reference image in order to enlarge its matching space. By applying BSA to practical vein pattern verification system, its verification rate was increased by about 10%.

  • PDF

User Identification Using Real Environmental Human Computer Interaction Behavior

  • Wu, Tong;Zheng, Kangfeng;Wu, Chunhua;Wang, Xiujuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3055-3073
    • /
    • 2019
  • In this paper, a new user identification method is presented using real environmental human-computer-interaction (HCI) behavior data to improve method usability. User behavior data in this paper are collected continuously without setting experimental scenes such as text length, action number, etc. To illustrate the characteristics of real environmental HCI data, probability density distribution and performance of keyboard and mouse data are analyzed through the random sampling method and Support Vector Machine(SVM) algorithm. Based on the analysis of HCI behavior data in a real environment, the Multiple Kernel Learning (MKL) method is first used for user HCI behavior identification due to the heterogeneity of keyboard and mouse data. All possible kernel methods are compared to determine the MKL algorithm's parameters to ensure the robustness of the algorithm. Data analysis results show that keyboard data have a narrower range of probability density distribution than mouse data. Keyboard data have better performance with a 1-min time window, while that of mouse data is achieved with a 10-min time window. Finally, experiments using the MKL algorithm with three global polynomial kernels and ten local Gaussian kernels achieve a user identification accuracy of 83.03% in a real environmental HCI dataset, which demonstrates that the proposed method achieves an encouraging performance.

Reviewing the Utilization of Smart Airport Security - Case Study of Different Technology Utilization -

  • Sung-Hwan Cho;Sang Yong Park
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.3
    • /
    • pp.172-177
    • /
    • 2023
  • The main purpose of the research was to review the global trends of airport's smart security technologies. Moreover, using the case studies of airport using smart security, this paper tried to propose the implication how the findings through the case studies may be important for airport policy and will impact the future research of airport operation. It is expected in the future the aviation security technology with biometric information evolves from single identification to multiple identification technology which has combined application of iris, vein and others. Facing post COVID-19 era, the number of passengers traveling through airports continues increase dramatically and the risks as well, the role of AI becomes even more crucial. With AI based automated security robotics airport operators could effectively handle the growing passenger and cargo volume and address the associated issues Smart CCTV analysis with A.I. and IoT applying solutions could also provide significant support for airport security.

Fusion algorithm for Integrated Face and Gait Identification (얼굴과 발걸음을 결합한 인식)

  • Nizami, Imran Fareed;Hong, Sug-Jun;Lee, Hee-Sung;Ann, Toh-Kar;Kim, Eun-Tai;Park, Mig-Non
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.15-18
    • /
    • 2007
  • Identification of humans from multiple view points is an important task for surveillance and security purposes. For optimal performance the system should use the maximum information available from sensors. Multimodal biometric systems are capable of utilizing more than one physiological or behavioral characteristic for enrollment, verification, or identification. Since gait alone is not yet established as a very distinctive feature, this paper presents an approach to fuse face and gait for identification. In this paper we will use the single camera case i.e. both the face and gait recognition is done using the same set of images captured by a single camera. The aim of this paper is to improve the performance of the system by utilizing the maximum amount of information available in the images. Fusion is considered at decision level. The proposed algorithm is tested on the NLPR database.

  • PDF

Super-Resolution Iris Image Restoration using Single Image for Iris Recognition

  • Shin, Kwang-Yong;Kang, Byung-Jun;Park, Kang-Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.2
    • /
    • pp.117-137
    • /
    • 2010
  • Iris recognition is a biometric technique which uses unique iris patterns between the pupil and sclera. The advantage of iris recognition lies in high recognition accuracy; however, for good performance, it requires the diameter of the iris to be greater than 200 pixels in an input image. So, a conventional iris system uses a camera with a costly and bulky zoom lens. To overcome this problem, we propose a new method to restore a low resolution iris image into a high resolution image using a single image. This study has three novelties compared to previous works: (i) To obtain a high resolution iris image, we only use a single iris image. This can solve the problems of conventional restoration methods with multiple images, which need considerable processing time for image capturing and registration. (ii) By using bilinear interpolation and a constrained least squares (CLS) filter based on the degradation model, we obtain a high resolution iris image with high recognition performance at fast speed. (iii) We select the optimized parameters of the CLS filter and degradation model according to the zoom factor of the image in terms of recognition accuracy. Experimental results showed that the accuracy of iris recognition was enhanced using the proposed method.

Enhanced Authentication System Performance Based on Keystroke Dynamics using Classification algorithms

  • Salem, Asma;Sharieh, Ahmad;Sleit, Azzam;Jabri, Riad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4076-4092
    • /
    • 2019
  • Nowadays, most users access internet through mobile applications. The common way to authenticate users through websites forms is using passwords; while they are efficient procedures, they are subject to guessed or forgotten and many other problems. Additional multi modal authentication procedures are needed to improve the security. Behavioral authentication is a way to authenticate people based on their typing behavior. It is used as a second factor authentication technique beside the passwords that will strength the authentication effectively. Keystroke dynamic rhythm is one of these behavioral authentication methods. Keystroke dynamics relies on a combination of features that are extracted and processed from typing behavior of users on the touched screen and smart mobile users. This Research presents a novel analysis in the keystroke dynamic authentication field using two features categories: timing and no timing combined features. The proposed model achieved lower error rate of false acceptance rate with 0.1%, false rejection rate with 0.8%, and equal error rate with 0.45%. A comparison in the performance measures is also given for multiple datasets collected in purpose to this research.

Multimodal Biometrics Recognition from Facial Video with Missing Modalities Using Deep Learning

  • Maity, Sayan;Abdel-Mottaleb, Mohamed;Asfour, Shihab S.
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.6-29
    • /
    • 2020
  • Biometrics identification using multiple modalities has attracted the attention of many researchers as it produces more robust and trustworthy results than single modality biometrics. In this paper, we present a novel multimodal recognition system that trains a deep learning network to automatically learn features after extracting multiple biometric modalities from a single data source, i.e., facial video clips. Utilizing different modalities, i.e., left ear, left profile face, frontal face, right profile face, and right ear, present in the facial video clips, we train supervised denoising auto-encoders to automatically extract robust and non-redundant features. The automatically learned features are then used to train modality specific sparse classifiers to perform the multimodal recognition. Moreover, the proposed technique has proven robust when some of the above modalities were missing during the testing. The proposed system has three main components that are responsible for detection, which consists of modality specific detectors to automatically detect images of different modalities present in facial video clips; feature selection, which uses supervised denoising sparse auto-encoders network to capture discriminative representations that are robust to the illumination and pose variations; and classification, which consists of a set of modality specific sparse representation classifiers for unimodal recognition, followed by score level fusion of the recognition results of the available modalities. Experiments conducted on the constrained facial video dataset (WVU) and the unconstrained facial video dataset (HONDA/UCSD), resulted in a 99.17% and 97.14% Rank-1 recognition rates, respectively. The multimodal recognition accuracy demonstrates the superiority and robustness of the proposed approach irrespective of the illumination, non-planar movement, and pose variations present in the video clips even in the situation of missing modalities.

Using multi-sensor for Development of Multiple Occupants' Activities Classification Model Based on LSTM (다중센서를 활용한 LSTM 기반 재실자 행동 분류 모델 개발)

  • Jin Su Park;Chul Seung Yang;Kyung-Ho Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1065-1071
    • /
    • 2023
  • In this paper discuss with research developing an LSTM model for classifying the behavior of occupants within a residence. The multi-sensor consists of an IAQ (Indoor Air Quality) sensor that measures indoor air quality, a UWB radar that tracks occupancy detection and location, and a Piezo sensor to measure occupants' biometric information, and collects occupant behavior data such as going out, staying, cooking, cleaning, exercise, and sleep by constructed an experimental environment similar to the actual residential environment. After the data with removed outliers and missing, the LSTM model is used to calculate accuracy, sensitivity, specificity of the occupant behavior classification model, T1 score.

Fusion algorithm for Integrated Face and Gait Identification (얼굴과 발걸음을 결합한 인식)

  • Nizami, Imran Fareed;An, Sung-Je;Hong, Sung-Jun;Lee, Hee-Sung;Kim, Eun-Tai;Park, Mig-Non
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.72-77
    • /
    • 2008
  • Identification of humans from multiple view points is an important task for surveillance and security purposes. For optimal performance the system should use the maximum information available from sensors. Multimodal biometric systems are capable of utilizing more than one physiological or behavioral characteristic for enrollment, verification, or identification. Since gait alone is not yet established as a very distinctive feature, this paper presents an approach to fuse face and gait for identification. In this paper we will use the single camera case i.e both the face and gait recognition is done using the same set of images captured by a single camera. The aim of this paper is to improve the performance of the system by utilizing the maximum amount of information available in the images. Fusion in considered at decision level. The proposed algorithm is tested on the NLPR database.