생체정보는 저장, 암기, 손실 우려가 없고 도용이 불가능하다는 점에서 패스워드, PKI 등 기존 인증 방법의 대체수단으로 주목받고 있지만, 개인정보 유출로 인한 프라이버시 침해가 발생한다. 이러한 취약점을 극복하고자 FIDO에서는 생체정보를 사용자 디바이스에 보존하여 인증하는 방식을 사용하여 서버에서의 개인정보 유출 문제를 해결하였다. 본 논문에서는 국내 외에서 활발히 연구되고 있는 FIDO 환경에서 사용할 수 있는 다중 생체정보 인증 방법을 제안한다. 다중생체정보를 이용하기 위해 지문과 뇌전도 신호를 뇌지문 정보를 생성하여 이를 FIDO 시스템에서 사용할 수 있는 방법을 제안한다. 제안 방법은 현재 기존 2-Factor 인증 체계의 한계로 인한 문제점을 다중 생체정보를 이용한 인증으로 해결할 수 있다.
본 논문의 목적은 다중 생체 인식을 위하여 사용되는 다양한 정규화함수와 결합 및 패턴 분류 알고리즘들의 성능을 비교 평가하는 것이다. 이를 위하여 NIST에서 제공하는 유사도 집합인 BSSR(Biometric from Set-Releasel) 데이터베이스와 다양한 정규화함수, 결합 및 패턴 분류 알고리즘을 이용하여 실험을 수행하였으며, HTER(Half Total Error Rate)을 이용한 평가 결과를 제시하고 있다. 본 연구는 단일 데이터베이스와 평가 항목을 이용한 평가 결과를 제시함으로써 다중 생체 인식시스템의 성능 개선 연구를 위한 토대가 될 수 있다.
퍼지 추출기는 노이즈가 섞여 입력값이 항상 같지 않은 생체 데이터로 키를 생성하여 생체 정보 노출 없이 안전하게 인증을 수행하는 바이오-암호화 기술이다. 그러나 한 사용자가 생체 데이터를 여러 서버에 등록할 경우 퍼지 추출기의 인증 과정에서 키를 올바르게 추출하기 위해 공개되는 정보인 보조 데이터에 대한 다양한 공격으로 키가 노출될 수 있다. 따라서 여러 서버에 같은 사람의 생체 데이터를 등록해도 안전한 재사용 가능한 퍼지 추출기에 관한 연구가 많이 이루어지고 있으나, 현재까지 제시된 연구들은 키 길이가 늘어남에 따라 키를 복구하는 과정의 횟수가 점진적으로 증가하여 효율적이지 않고 보안성 높은 시스템에 적용하기 힘들다. 이에 본 논문에서는 키 길이가 늘어나도 인증 과정의 수행 횟수가 같거나 비슷한 LWE 기반의 효율적이고 재사용 가능한 퍼지 추출기를 설계하였고, 제안 기법이 Apon et al.[5]이 정의한 재사용의 안전성을 만족함을 보였다.
최근 생체 인증 시스템이 확대됨에 따라, 생체 정보를 이용하여 공개키 기반구조(Bio-PKI)에 적용하는 연구들이 진행 중이다. Bio-PKI 시스템에서는 공개키를 생성하기 위해 생체 정보로부터 암호학적 키를 생성하는 과정이 필요하다. 암호학적 키 생성 방법 중 특성 정보를 숫자로 정량화하는 기법은 데이터 손실을 유발하고 이로 인해 키 추출 성능이 저하된다. 이 논문에서는 다중 분류 모델을 이용하여 생체 정보를 분류한 결과를 이용하여 키를 생성하는 방법을 제안한다. 제안하는 기법은 특성 정보의 손실이 없어 높은 키 추출 성능을 보였고, 여러 개의 분류 모델을 이용하기 때문에 충분한 길이의 키를 생성한다.
A multiple classification system based on a new boosting technique has been approached utilizing different biometric traits, that is, color face, iris and eye along with fingerprints of right and left hands, handwriting, palm-print, gait (silhouettes) and wrist-vein for person authentication. The images of different biometric traits were taken from different standard databases such as FEI, UTIRIS, CASIA, IAM and CIE. This system is comprised of three different super-classifiers to individually perform person identification. The individual classifiers corresponding to each super-classifier in their turn identify different biometric features and their conclusions are integrated together in their respective super-classifiers. The decisions from individual super-classifiers are integrated together through a mega-super-classifier to perform the final conclusion using programming based boosting. The mega-super-classifier system using different super-classifiers in a compact form is more reliable than single classifier or even single super-classifier system. The system has been evaluated with accuracy, precision, recall and F-score metrics through holdout method and confusion matrix for each of the single classifiers, super-classifiers and finally the mega-super-classifier. The different performance evaluations are appreciable. Also the learning and the recognition time is fairly reasonable. Thereby making the system is efficient and effective.
In this paper, by managing the biometric data is changed with the passage of time, a systematic and scientifically propose a framework to increase the bio-vector generation efficiency of the smart health care. Increasing the development of human life as a medicine and has emerged smart health care according to this. Organic and efficient health management becomes possible to generate a vector when the biological domain to the wireless communication infrastructure based on the measurement of the health status and to take action in accordance with the change of the physical condition. In this paper, we propose a framework to create a bio-vector that contains information about the current state of health of the person. In the proposed framework, Bio vectors may be generated by collecting the biometric data such as blood pressure, pulse, body weight. Biometric data is the raw data from the bio-vector. The scope of the primary data can be set to active. As the collecting biometric data from multiple items of the bio-recognition vectors may increase. The resulting bio-vector is used as a measure to determine the current health of the person. Bio-vector generating the proposed framework, it can aid in the efficiency and systemic health of healthcare for the individual.
현대 사회에서는 기업의 의사결정에 있어 고객의 중요성이 지속적으로 증가되고 있으며, 정보통신 기술의 발전에 힘입어 컴퓨터상에서 효과적으로 주요 고객의 선호도를 측정하는 기법이 연구되고 있다. 그러나 이러한 선호도는 개인의 성향이 크게 반영되므로 명확하게 수치화하기 어렵고 측정 기준에 따라 모호한 결과가 산출되는 어려움이 있다. 따라서 본 논문에서는 측정된 생체정보를 이용하여 구성한 다중 감성모델을 기반으로 고객의 선호도를 평가하는 시스템을 제안하였다. 본 시스템은 여러 생체정보로 이루어진 다차원 벡터의 학습을 통하여 구조화된 감성모델을 이용하므로 동일한 기준을 적용하여 고객 선호도를 평가할 수 있다. 또한 특정 대상에 특화된 감성모델을 학습하여 정확도를 더 향상시키는 것도 가능하며 실험을 통하여 정확도의 향상을 보였다.
사용자 인증을 위해 저장된 중요한 바이오정보가 타인에게 유출되어 도용된다면 패스워드나 PIN과 달리 변경이 불가능하므로 심각한 문제를 일으킬 수 있다. 따라서 타인에게 유출되더라도 재사용이 불가능하도록 하기 위하여 사용자의 바이오정보에 역변환이 불가능한 함수를 적용하여 저장하고 변환된 상태에서 인증과정을 수행할 수 있는 방법이 필요하다. 최근 바이오정보를 안전하게 보호하기 위해 암호학적 방법으로 연구되어지고 있는 퍼지볼트 이론을 지문정보에 적용하는 연구가 활발히 진행되고 있다. 그러나 대부분의 연구들이 지문 특징점의 개수를 고려하지 않고 고정된 차수의 다항식을 선택하기 때문에 지문영상에서 특징점의 개수가 다항식의 차수보다 적을 경우 동작하지 못하는 문제점이 발생한다. 본 논문에서는 지문 퍼지볼트의 보안성과 인식성능을 향상시키기 위해서 다항식의 차수를 특징점의 개수에 따라 가변적으로 선택하는 방법을 제안한다. 특히, 낮은 차수의 다항식을 사용할 경우 두 개 이상의 서로 다른 다항식을 사용하여 보안성을 향상시킬 수 있다. 실험을 통하여 제안한 방법은 보안성과 인식성능이 향상되는 것을 확인하였다.
블록체인 기술은 분산된 신뢰구조를 제공하고, 위변조가 불가능한 시스템 구현이 가능하고, Smart Contract 등 이 가능하면서 인터넷 차세대 보안 기술로 발전하고 있다. 블록체인 기술이 차세대 보안기술로 부각되면서 무결성 뿐만 아니라 인증을 비롯하여 다양한 보안 서비스에 대한 연구가 진행되고 있다. 인터넷 기반의 다양한 서비스는 패스워드 기반의 사용자 인증으로 이루어지고 있지만 클라이언트나 네트워크에서 가로채기가 가능하고, 패스워드 정보가 저장된 서버가 해킹의 위험에 노출되어 있다. 따라서 무결성을 보장할 수 있는 블록체인 기반 기술과 OTP 기반의 안전한 인증 기법을 제안한다. 특히, 이중 인증(Two-Factor Authentication) 은 OTP 기반의 인증과 사용자가 가지고 있는 생체인증의 결합으로 패스워드 없이 안전한 인증이 가능하다. 제안기법은 인증에 필요한 생체정보를 식별할 수 없도록 다중 해시함수를 적용하여 트랜잭션을 생성하여 블록에 담기 때문에 서버로부터 분리되어 서버 공격에 안전하다.
생체 인식은 사람의 생체적, 행동적 특징 정보를 특정 장치로 추출하여 본인 여부를 판별하는 기술이다. 생체 인식 분야에서 생체 특성 위조, 복제, 해킹 등 사이버 위협이 증가하고 있다. 이에 대응하여 보안 시스템이 강화되고 복잡해지며, 개인이 사용하기 어려워지고 있다. 이를 위해 다중 생체 인식 모델이 연구되고 있다. 기존 연구들은 특징 융합 방법을 제시하고 있으나, 특징 융합 방법 간의 비교는 부족하다. 이에 본 논문에서는 지문, 얼굴, 홍채 영상을 이용한 다중 생체 인식 모델의 융합 방법을 비교 평가했다. 특징 추출을 위해VGG-16, ResNet-50, EfficientNet-B1, EfficientNet-B4, EfficientNet-B7, Inception-v3를 사용했으며, 특성융합을 위해 'Sensor-Level', 'Feature-Level', 'Score-Level', 'Rank-Level' 융합 방법을 비교 평가했다. 비교평가결과 'Feature-Level' 융합 방법에서 EfficientNet-B7 모델이 98.51%의 정확도를 보이며 높은 안정성을 보였다. 그러나 EfficietnNet-B7모델의 크기가 크기 때문에 생체 특성 융합을 위한 모델 경량화 연구가 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.