• 제목/요약/키워드: Multiphysics simulation

검색결과 76건 처리시간 0.028초

연속방전 시뮬레이션을 이용한 미세방전가공 표면의 예측 (Prediction of the Surface Machined by EDM Using Iterative Discharge Simulation)

  • 김태곤;민병권;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.509-510
    • /
    • 2006
  • Simulation of micro electrical discharge machining (micro-EDM) process using finite element analysis is proposed. Multiphysics model which has three steps; heat transfer analysis, structural analysis and electric field analysis is developed for simulation. Machined surface for successive five discharges is simulated using developed multiphysics model. Machined surface roughness was simulated under two discharge conditions and the simulated results are compared with actual machined surfaces. From the comparison it is demonstrated that the model can accurately predict the machined surface with the error less than $0.5{\mu}m$.

  • PDF

COMSOL Multiphysics를 활용한 캔틸레버 형태의 압전 에너지 하베스터 구조 해석 시뮬레이션 (Structural Analysis Simulation of Cantilever Shaped Piezoelectric Energy Harvester Using COMSOL Multiphysics)

  • 곽민섭;황건태
    • 한국전기전자재료학회논문지
    • /
    • 제34권6호
    • /
    • pp.416-425
    • /
    • 2021
  • In the 4th industrial age, electronic devices are becoming smaller and lighter with a low power consumption to overcome spatial limitation. The piezoelectric energy harvesters can convert mechanical kinetic energy into electric energy; thus, enabling the operation of small electronic devices. Recently, various piezoelectric harvesters have been reported and the electric output from these harvesters could be anticipated by theoretical analysis methods. For example, COMSOL Multiphysics software provides a theoretical simulation of piezoelectric effect with a combination of mechanical and electrical phenomena in the piezoelectric materials. This article introduces a brief modeling of piezoelectric harvester to investigate mechanical stress and electrical output of harvesting devices by the COMSOL Multiphysics software.

전기자동차의 다중레벨 모델링과 시뮬레이션 (Multi-level Modeling and Simulation of Electrical Vehicles)

  • 오용택
    • 한국실천공학교육학회논문지
    • /
    • 제4권2호
    • /
    • pp.129-135
    • /
    • 2012
  • 전기자동차들을 수학적으로 모델링하고 시뮬레이션 하는 많은 방법들이 있다. 전기 자동차의 각 요소들은 다른 물리적인 배경과 모델들을 갖고 있으나, 하나의 수학적 모델로 구성하기란 어려우므로 다양한 물리적 모델이 요구된다. 시뮬레이션이 목적에 따라 수행할 시뮬레이션에 관한 디양한 레벨들이 있다. 즉, 개념 체계 레벨, 회로 레벨, 더 상세한 요소레벨로 구성된다. 본 연구에서는 전기 자동차에서 여러 가지 요소들에 대한 다양한 물리적 모델들과, 다중레벨 시뮬레이션에 관하여 연구하고자 한다. 또한, 본 시뮬레이션 방법은 공학교육에 학습효과를 향상 시킬 수 있다.

  • PDF

Development of a multiphysics numerical solver for modeling the behavior of clay-based engineered barriers

  • Navarro, Vicente;Asensio, Laura;Gharbieh, Heidar;la Morena, Gema De;Pulkkanen, Veli-Matti
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1047-1059
    • /
    • 2019
  • This work describes the development of a numerical module with a multiphysics structure to simulate the thermo-hydro-chemo-mechanical behavior of compacted bentonites. First, the conceptual model, based on the state-of-the-art formulation for clay-based engineered barriers in deep geological repositories, is described. Second, the advantages of multiphysics-based modules are highlighted. Then, the guidelines to develop a code using such tools are outlined, presenting an example of implementation. Finally, the simulation of three tests that illustrate the behavior of compacted bentonites assesses the scope of the developed code. The satisfactory results obtained, and the relative simplicity of implementation, show the opportunity of the modeling strategy proposed.

수중추진기의 추진력 시뮬레이션 및 실험 (Thrust Simulation and Experiments for Underwater Thrusters)

  • 안용석;백운경
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.51-59
    • /
    • 2017
  • In the early design stage of underwater vehicles, it is important to estimate the vehicle's underwater motion performance. The key design elements for the motion are propellers, battery power, and underwater resistance of the vehicle. Small thrusters with motor and propeller are usually used for the UUV(unmanned underwater vehicles). In this study, a multiphysics thruster model combining electro-mechanical and hydrodynamics characteristics was proposed to estimate the thruster performance. To show the applicability of the mathematical model, an sample thruster was used for the derive the unknown parameters of thruster. Hydrodynamic parameters were calculated for a 3D geometry model of the propeller by ANSYS/CFX program. Finally, Matlab/simulink program was used for the numerical simulation to predict the thruster performance from the given voltage/current input to the motor. Also, proved validity of simulation model by experiment test. Test were done by 2 mode(middle/high speed, reverse). The thruster performance curves obtained from this simulation were confirmed to be similar with experiment results.

수소가스발생 장치의 전해조 분라판의 유로설계에 관한 전산모사 연구 (A study on the channel design of bipolar plate of electrolytic cell of hydrogen gas generation system by flow dynamic simulation)

  • 조현학;장봉재;송주영
    • 한국응용과학기술학회지
    • /
    • 제27권2호
    • /
    • pp.152-156
    • /
    • 2010
  • This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate of generated gas is the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL $Multiphysics^{TM}$ to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator.

다중물리 유한요소해석에 의한 SiC 단결정의 용액성장 공정 설계 (Process design for solution growth of SiC single crystal based on multiphysics modeling)

  • 윤지영;이명현;서원선;설용건;정성민
    • 한국결정성장학회지
    • /
    • 제26권1호
    • /
    • pp.8-13
    • /
    • 2016
  • 용액성장법에 의한 SiC 단결정 성장은 Si 또는 Si-금속합금의 융액으로부터 SiC를 성장시키는 방법으로서, 통상의 상부종자 용액성장법(Top Seeded Solution Growth)에서는 Si 융액을 담는 흑연도가니로부터 C가 Si 융액에 용해되고 용해된 C이 상부에 위치한 종자결정으로 이동하여 종자결정상에 SiC 형태로 재결정화하는 단계를 거쳐 SiC의 단결정을 성장시키는 과정을 거치게 된다. SiC 용액성장에 있어서는 SiC의 단결정성장을 위하여 흑연도가니의 형상, 크기, 재질 및 상대적 위치 배열 등 온도제어와 유체흐름 제어를 위해 다양한 공정변수를 선정해야한다. 본 연구에서는 용액성장공정의 설계를 위해 상용의 유한요소해석 패키지인 COMSOL Multiphysics를 이용하여 전자기장해석, 열전달해석, 유체해석에 대한 다중물리해석모델을 구축하고 이 모델을 이용하여 결정성장공정을 설계하였다. 해석결과에 기초하여 2 inch off-axis 4H-SiC 단결정을 종자결정으로 적용하여 $1700^{\circ}C$에서 상부종자 용액성장법에 의하여 SiC 단결정을 성장시켰다. 광학현미경 및 고분해능 X선회절분석을 통해 결정성을 분석한 결과 해당 성장조건에서 양호한 품질의 단결정이 성장함을 확인하였다. 이로써 본 연구에서 구축된 다중물리해석모델이 SiC의 용액성장 공정설계에 유효함을 확인하였다.

무선 센서용 표면탄성파의 3 차원 모델링 (3D modeling of a surface acoustic wave for wireless sensors)

  • 트렌 녹 쿵;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.111-111
    • /
    • 2009
  • In this work, we discuss simulation of surface acoustic wave device using Comsol Multiphysics. The structure SAW device based on piezoelectric thin film aluminum-nitride (AlN) on silicon was simulated. Some parameters of SAW device such as surface velocity, displacement of piezoelectric thin film were evaluated by software. Many modes and shapes of wave are also discussed in this paper. For evaluation physical parameters of AlN piezoelectric layer, the SAW resonator was modeled and simulation results were also compared with experiment results. we simulated arid evaluated the surface Rayleigh wave of AlN thin film on silicon substrate. Results simulation and experiment showed the surface velocity of AlN thin film was about 5200 m/s and shape of surface wave was also displayed. This paper has also proposed as method to study SAW characteristic of piezoelectric thin film and found out measurement values accurately of film such as stiffness matrix, piezoelectric matrix. These values are very important in calculation and design SAW device or MEMS device based on AlN piezoelectric layer.

  • PDF

2상 흐름계에서 유로설계에 따른 전해조 분리판의 전산모사 연구 (A study on the channel design of bipolar plate of electrolytic cell by flow dynamic simulation in the two phase flow system)

  • 조현학;장봉재;송주영
    • 한국응용과학기술학회지
    • /
    • 제27권4호
    • /
    • pp.415-420
    • /
    • 2010
  • This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate and flow pattern of generated gas in the two phase flow system are the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL MultiphysicsTM to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator and flow pattern of two phase fluid in the electrode. In this study, liquid electrolyte flows into the bipolar plate and decomposed into gas phase, two phase flow simulation is applied to measure the efficiency of hydrogen gas generation.

A Fully Optimized Electrowinning Cell for Achieving a Uniform Current Distribution at Electrodes Utilizing Sampling-Based Sensitivity Approach

  • Choi, Nak-Sun;Kim, Dong-Wook;Cho, Jeonghun;Kim, Dong-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.641-646
    • /
    • 2015
  • In this paper, a zinc electrowinning cell is fully optimized to achieve a uniform current distribution at electrode surfaces. To effectively deal with an electromagnetically coupled problem with multi-dimensional design variables, a sampling-based sensitivity approach is combined with a highly tuned multiphysics simulation model. The model involves the interrelation between electrochemical reactions and electromagnetic phenomena so as to predict accurate current distributions in the electrowinning cell. In the sampling-based sensitivity approach, Kriging-based surrogate models are generated in a local window, and accordingly their sensitivity values are extracted. Such unique design strategy facilitates optimizing very complicated multiphysics and multi-dimensional design problems. Finally, ten design variables deciding the electrolytic cell structure are optimized, and then the uniformity of current distribution in the optimized cell is examined through the comparison with existing cell designs.