• Title/Summary/Keyword: Multipath characteristics

Search Result 147, Processing Time 0.031 seconds

A Study on the Low Elevation Target Tracking under Multipath Conditions Using Laser Tracking System (레이저 추적기를 이용한 저고도 비행체 추적 기법 연구)

  • Yoo, Seung-Oh
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.6
    • /
    • pp.572-580
    • /
    • 2015
  • RF skin tracking of instrumentation RADAR cannot acquire stable track data, because of effect of multipath interference especially elevation direction. In this paper, low altitude target tracking method using laser tracking system is suggested to overcome this restriction. The effect of multipath can be reduced by increasing angle resolution with laser characteristics of very short pulse and narrow beamwidth. RF skin track, beacon track and laser track data for the integrated calibration target on the ground and target ship on the sea are gathered. And they are compared and analyzed to confirm the performance of laser tracking system. As a result, it shows that the suggested laser track method has better performance than RF skin track under multipath conditions.

Error rate performance of DS / SSMA system in multipath fading channel (다경로 페이딩 채널에서 DS/SSMA 시스템의 오율특성)

  • 박성경;송왕철;강창언
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.1
    • /
    • pp.66-76
    • /
    • 1995
  • In this paper, the error rate performance of DS/SSMA system in multipath fading channel is calculated by computer simulation. At first, the multipath fading channel is modeled with TDL(Tap Delay Line) model. The characteristics of channels, including multipath fading effects and error pattern, are examined by doppler frequency and signal bandwidth, and time spread variation. Using the multipath fading channel model, the error rateperformance of block code and convolutional code is compared, thus the coding sys- tem is applied to the DS / SSMA system. The BER results of DS / SSMA system show that the proposed receiver gives about 2~3[dB] improve- ment compared with the conventional receiver.

  • PDF

Field-Measurement-Based Received Power Analysis for Directional Beamforming Millimeter-Wave Systems: Effects of Beamwidth and Beam Misalignment

  • Lee, Juyul;Kim, Myung-Don;Park, Jae-Joon;Chong, Young Jun
    • ETRI Journal
    • /
    • v.40 no.1
    • /
    • pp.26-38
    • /
    • 2018
  • To overcome considerable path loss in millimeter-wave propagation, high-gain directional beamforming is considered to be a key enabling technology for outdoor 5G mobile networks. Associated with beamforming, this paper investigates propagation power loss characteristics in two aspects. The first is beamwidth effects. Owing to the multipath receiving nature of mobile environments, it is expected that a narrower beamwidth antenna will capture fewer multipath signals, while increasing directivity gain. If we normalize the directivity gain, this narrow-beamwidth reception incurs an additional power loss compared to omnidirectional-antenna power reception. With measurement data collected in an urban area at 28 GHz and 38 GHz, we illustrate the amount of these additional propagation losses as a function of the half-power beamwidth. Secondly, we investigate power losses due to steering beam misalignment, as well as the measurement data. The results show that a small angle misalignment can cause a large power loss. Considering that most standard documents provide omnidirectional antenna path loss characteristics, these results are expected to contribute to mmWave mobile system designs.

A Study on Analysis of Multipath Signal Detection using GPS Signal Strength Information (GPS 신호세기 정보를 이용한 다중경로신호 검출 분석에 대한 연구)

  • Kim, Dusik;Park, Kwan-Dong;Kim, Hye-In;Tae, Hyunu
    • Journal of Navigation and Port Research
    • /
    • v.39 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • The number of mobile terminals equipped with a GPS module is steadily increasing today. However, because they using code pseudorange measurements in positioning, the positioning accuracy of mobile terminals is lower than that of those receivers using carrier phases. Especially, the multipath signal causes more significant errors in code pseudoranges. Therefore, the techniques of multipath detection and elimination is necessary. In this study, as an initial analysis of multipath detection and elimination technique development, we tested the feasibility of multipath signal detection using GPS signal strength information. We found that the GPS signal strength increases as the elevation angle gets higher in the open-sky environment. Also, we found that the signal strength decreases when there were some signal reflectors nearby. We checked the repeatability of the signal strength variation characteristics by reflecting repeat time of GPS satellites. As a result, this characteristics repeats almost perfectly when GPS satellites pass the same orbit. Therefore, we found that it is not a temporary phenomenon and the multipath signal detection should be possible by using GPS signal strength information.

Measurement-Based Propagation Channel Characteristics for Millimeter-Wave 5G Giga Communication Systems

  • Lee, Juyul;Liang, Jinyi;Kim, Myung-Don;Park, Jae-Joon;Park, Bonghyuk;Chung, Hyun Kyu
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1031-1041
    • /
    • 2016
  • This paper presents millimeter-wave (mmWave) propagation characteristics and channel model parameters including path loss, delay, and angular properties based on 28 GHz and 38 GHz field measurement data. We conducted measurement campaigns in both outdoor and indoor at the best potential hotspots. In particular, the model parameters are compared to sub-6 GHz parameters, and system design issues are considered for mmWave 5G Giga communications. For path loss modeling, we derived parameters for both the close-in free space model and the alpha-beta-gamma model. For multipath models, we extracted delay and angular dispersion characteristics including clustering results.

Models and Charcteristics of Multipath Propagation on Mobile Radio in an Urban Area (도시내 이동무선에서의 다중파전파전파의 특성 및 모델에 관한 연구)

  • 하덕호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.4
    • /
    • pp.293-306
    • /
    • 1989
  • In this paper, the models and characteristics of multipath propagation in an urban environment are described. Three propagation models(a random model, a ray model and a method of estimating time delay is proposed based on the envelope correlation between two radio frequencies. It is shown on the basis of laboratory simulation and field tests that the simple two-ray model is an adequate model for the fundamental study of the multipath propagation characteristic of the mobile radiowave and the estimating time delays of multipath-propagated waves in an urban area.

  • PDF

Reducing the Flow Completion Time for Multipath TCP

  • Heo, GeonYeong;Yoo, Joon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3900-3916
    • /
    • 2019
  • The modern mobile devices are typically equipped with multiple network interfaces, e.g., 4G LTE, Wi-Fi, Bluetooth, but the current implementation of TCP can support only a single path at the same time. The Multipath TCP (MPTCP) leverages the multipath feature and provides (i) robust connection by utilizing another interface if the current connection is lost and (ii) higher throughput than single path TCP by simultaneously leveraging multiple network paths. However, if the performance between the multiple paths are significantly diverse, the receiver may have to wait for packets from the slower path, causing reordering and buffering problems. To solve this problem, previous MPTCP schedulers mainly focused on predicting the latency of the path beforehand. Recent studies, however, have shown that the path latency varies by a large margin over time, thus the MPTCP scheduler may wrongly predict the path latency, causing performance degradation. In this paper, we propose a new MPTCP scheduler called, choose fastest subflow (CFS) scheduler to solve this problem. Rather than predicting the path latency, CFS utilizes the characteristics of these paths to reduce the overall flow completion time by redundantly sending the last part of the flow to both paths. We compare the performance through real testbed experiments that implements CFS. The experimental results on both synthetic packet generation and actual Web page requests, show that CFS consistently outperforms the previous proposals in all cases.

Recommendation of Navigation Performance for K-UAM Considering Multipath Error in Urban Environment Operation

  • Sangdo Park;Dongwon Jung;Hyang Sig Jun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.4
    • /
    • pp.379-389
    • /
    • 2023
  • According to the Korea Urban Air Mobility (K-UAM) Concept of Operation (ConOps), the Global Navigation Satellite System (GNSS) is recommended as the primary navigation system and the performance specification will be implemented considering the standard of Performance Based Navigation (PBN). However, by taking into account the characteristics of an urban environment and the concurrent operations of multiple UAM aircraft, the current PBN standards for civil aviation seem difficult to be directly applied to an UAM aircraft. Therefore, by referring to technical documents published in the literature, this paper examines the feasibility of applying the proposed performance requirements to K-UAM, which follows the recommendation of navigation performance requirements for K-UAM. In accordance with the UAM ConOps, the UAM aircraft is anticipated to maintain low altitude during approach and landing phases. Subsequently, the navigation performance degradation could occur in the urban environment, and the primary degradation factor is identified as multipath error. For this reason, to ensure the safety and reliability of the K-UAM aircraft, it is necessary to analyze the degree of performance degradation related to the urban environment and then propose an alternative aid to enhance the navigation performance. To this end, the aim of this paper is to model the multipath effects of the GNSS in an urban environment and to carry out the simulation studies using the real GNSS datasets. Finally, the initial navigation performance requirement is proposed based on the results of the numerical simulation for the K-UAM.

Performance Analysis of PIC with Rake receiver in the Multipath Fading Channel (다경로 페이딩 채널에서 Rake 수신기를 사용하는 간섭제거 기법의 성능 분석)

  • 최태규;김태영;고균병;홍대식;강창언
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.153-156
    • /
    • 2000
  • In this paper, the performance of the parallel interference cancellation(PIC) with RAKE receiver is more precisely analyzed in the uplink multipath fading channel. There is some difference between the proposed analysis method and the previous ones. Namely, it can be confirmed that the proposed analysis method by using stochastical characteristics is more accurate than the previous ones. It is also verified that the analysis result is similar to simulation as the number of user is increased. It is assumed that the channel estimation is perfect and the delay of multipath is Tc in the simulation.

  • PDF

Towards Robust Key Extraction from Multipath Wireless Channels

  • Shehadeh, Youssef El Hajj;Alfandi, Omar;Hogrefe, Dieter
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.385-395
    • /
    • 2012
  • This paper tackles the problem of generating shared secret keys based on the physical characteristics of the wireless channel. We propose intelligent quantization mechanisms for key generation, achieving high secret bits generation rate. Moreover, some practical issues affecting the performance of the key generation mechanism are deeply investigated. Mainly, we investigate the effects of delay and mobility on the performance and we enhance the key generation mechanism accordingly. As a result, this paper presents a framework towards robust key generation from multipath wireless channels.