• Title/Summary/Keyword: Multimodal imaging system

Search Result 14, Processing Time 0.023 seconds

Nano Bio Imaging for NT and BT

  • Moon, DaeWon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.51.2-51.2
    • /
    • 2015
  • Understanding interfacial phenomena has been one of the main research issues not only in semiconductors but only in life sciences. I have been trying to meet the atomic scale surface and interface analysis challenges from semiconductor industries and furthermore to extend the application scope to biomedical areas. Optical imaing has been most widely and successfully used for biomedical imaging but complementary ion beam imaging techniques based on mass spectrometry and ion scattering can provide more detailed molecular specific and nanoscale information In this presentation, I will review the 27 years history of medium energy ion scattering (MEIS) development at KRISS and DGIST for nanoanalysis. A electrostatic MEIS system constructed at KRISS after the FOM, Netherland design had been successfully applied for the gate oxide analysis and quantitative surface analysis. Recenlty, we developed time-of-flight (TOF) MEIS system, for the first time in the world. With TOF-MEIS, we reported quantitative compositional profiling with single atomic layer resolution for 0.5~3 nm CdSe/ZnS conjugated QDs and ultra shallow junctions and FINFET's of As implanted Si. With this new TOF-MEIS nano analysis technique, details of nano-structured materials could be measured quantitatively. Progresses in TOF-MEIS analysis in various nano & bio technology will be discussed. For last 10 years, I have been trying to develop multimodal nanobio imaging techniques for cardiovascular and brain tissues. Firstly, in atherosclerotic plaque imaging, using, coherent anti-stokes raman scattering (CARS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) multimodal analysis showed that increased cholesterol palmitate may contribute to the formation of a necrotic core by increasing cell death. Secondly, surface plasmon resonance imaging ellipsometry (SPRIE) was developed for cell biointerface imaging of cell adhesion, migration, and infiltration dynamics for HUVEC, CASMC, and T cells. Thirdly, we developed an ambient mass spectrometric imaging system for live cells and tissues. Preliminary results on mouse brain hippocampus and hypotahlamus will be presented. In conclusions, multimodal optical and mass spectrometric imaging privides overall structural and morphological information with complementary molecular specific information, which can be a useful methodology for biomedical studies. Future challenges in optical and mass spectrometric imaging for new biomedical applications will be discussed.

  • PDF

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul;Oh, Sung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.218-228
    • /
    • 2021
  • Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

Development of Gas Type Identification Deep-learning Model through Multimodal Method (멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발)

  • Seo Hee Ahn;Gyeong Yeong Kim;Dong Ju Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.525-534
    • /
    • 2023
  • Gas leak detection system is a key to minimize the loss of life due to the explosiveness and toxicity of gas. Most of the leak detection systems detect by gas sensors or thermal imaging cameras. To improve the performance of gas leak detection system using single-modal methods, the paper propose multimodal approach to gas sensor data and thermal camera data in developing a gas type identification model. MultimodalGasData, a multimodal open-dataset, is used to compare the performance of the four models developed through multimodal approach to gas sensors and thermal cameras with existing models. As a result, 1D CNN and GasNet models show the highest performance of 96.3% and 96.4%. The performance of the combined early fusion model of 1D CNN and GasNet reached 99.3%, 3.3% higher than the existing model. We hoped that further damage caused by gas leaks can be minimized through the gas leak detection system proposed in the study.

Developments of Small Animal Imaging Systems in Korea (소동물 영상시스템의 국내 개발 현황)

  • Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Many types of small animal imaging modalities, like micro-CT, micro-PET, and micro-SPECT, have been recently developed worldwide. Small animal imaging systems are now recognized as indispensable tools to validate efficacy and safety of new drugs or new therapeutic methods using the animal disease models. With increasing demands for small animal imaging in biomedical research, multimodal small animal imaging systems, like micro-PET/CT or micro PET/MRI, are now also being developed. Small animal imaging with spatial resolution and sensitivity comparable to human imaging is quite challenging since laboratory small animals are much smaller than human beings. Research activities in Korea on small animal imaging systems are reviewed in this paper. In the field of micro-CT and micro-PET, many world-class technologies have been developed successfully in Korea. It is expected that the developed animal imaging system technologies can be used in the development of clinical imaging systems in Korea in the near future.

Recent Progress in MRI Contrast Agent with Ceramic LDH Nanohybrids (세라믹 LDH 나노하이브리드를 이용한 MRI 조영제의 최신 연구동향)

  • Ha, Seongjin;Jin, Wenji;Park, Dae-Hwan
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.269-280
    • /
    • 2019
  • Ceramic layered double hydroxide (LDH) nanohybrids have attracted considerable interest in biomedical science due to their unique structural feature and characteristics in biological condition. Many studies on LDH nanoparticles have been reported in diagnosis applications including magnetic resonance imaging (MRI) contrast agents in order to not only provide better imaging performance through multimodal imaging strategy, but realize therapeutic function which treat cancers in one platform. This review highlights the recent progress in MRI T1 contrast agent, dual modal imaging system, and MRI-guided drug delivery systems ranging from synthetic method and characterization to evaluation in vitro and in vivo based on the ceramic LDH nanohybrids. Future research directions are also suggested for next-generation bio-imaging contrast agent.

Multimodal Digital Photographic Imaging System for Total Diagnostic Analysis of Skin Lesions: DermaVision-Pro (다모드 디지털 사진 영상 시스템을 이용한 피부 손상의 진단적 분석에 대한 연구 : DermaVision-Pro)

  • Bae, Young-Woo;Kim, Eun-Ji;Jung, Byung-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.153-154
    • /
    • 2008
  • Digital photographic analysis is currently considered as a routine procedure in clinic because periodic follow-up examinations can provide meaningful information for diagnosis. However, it is impractical to separately evaluate all suspicious lesions with conventional digital photographic systems, which have inconsistent characteristics of the environmental conditions. To address the issue, it is necessary for total diagnostic evaluation in clinic to integrate conventional systems. Previously, a multimodal digital photographic imaging system, which provides a conventional color image, parallel and cross polarization color images and a fluorescent color image, was developed for objective evaluation of facial skin lesions. Based on our previous study, we introduce a commercial product, "DermaVision-PRO," for routine use in clinical application in dermatology. We characterize the system and describe the image analysis methods for objective evaluation of skin lesions. In order to demonstrate the validity of the system in dermatology, sample images were obtained from subjects with various skin disorders, and image analysis methods were applied for objective evaluation of those lesions.

  • PDF

Development of a multi-modal imaging system for single-gamma and fluorescence fusion images

  • Young Been Han;Seong Jong Hong;Ho-Young Lee;Seong Hyun Song
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3844-3853
    • /
    • 2023
  • Although radiation and chemotherapy methods for cancer therapy have advanced significantly, surgical resection is still recommended for most cancers. Therefore, intraoperative imaging studies have emerged as a surgical tool for identifying tumor margins. Intraoperative imaging has been examined using conventional imaging devices, such as optical near-infrared probes, gamma probes, and ultrasound devices. However, each modality has its limitations, such as depth penetration and spatial resolution. To overcome these limitations, hybrid imaging modalities and tracer studies are being developed. In a previous study, a multi-modal laparoscope with silicon photo-multiplier (SiPM)-based gamma detection acquired a 1 s interval gamma image. However, improvements in the near-infrared fluorophore (NIRF) signal intensity and gamma image central defects are needed to further evaluate the usefulness of multi-modal systems. In this study, an attempt was made to change the NIRF image acquisition method and the SiPM-based gamma detector to improve the source detection ability and reduce the image acquisition time. The performance of the multi-modal system using a complementary metal oxide semiconductor and modified SiPM gamma detector was evaluated in a phantom test. In future studies, a multi-modal system will be further optimized for pilot preclinical studies.

Multimodal Bio-signal Measurement System for Sleep Analysis (수면 분석을 위한 다중 모달 생체신호 측정 시스템)

  • Kim, Sang Kyu;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.609-616
    • /
    • 2018
  • In this paper, we designed a multimodal bio-signal measurement system to observe changes in the brain nervous system and vascular system during sleep. Changes in the nervous system and the cerebral blood flow system in the brain during sleep induce a unique correlation between the changes in the nervous system and the blood flow system. Therefore, it is necessary to simultaneously observe changes in the brain nervous system and changes in the blood flow system to observe the sleep state. To measure the change of the nervous system, EEG, EOG and EMG signal used for the sleep stage analysis were designed. We designed a system for measuring cerebral blood flow changes using functional near-infrared spectroscopy. Among the various imaging methods to measure blood flow and metabolism, it is easy to measure simultaneously with EEG signal and it can be easily designed for miniaturization of equipment. The sleep stage was analyzed by the measured data, and the change of the cerebral blood flow was confirmed by the change of the sleep stage.

Sentinel lymph node mapping using tri-modal human serum albumin conjugated with visible dye, near infrared fluorescent dye and radioisotope

  • Kang, Se Hun;Kim, Seo-il;Jung, So-Youn;Lee, Seeyoun;Kim, Seok Won;Kim, Seok-ki
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.62-73
    • /
    • 2015
  • We developed an evans blue-indocyanine green-$^{99m}Tc$-human serum albumin conjugate for sentinel lymph node mapping and we describe its unique potential usage for clinical implications. This conjugate has combined the strengths of visible blue dye, near-infrared fluorescence and radioisotope into one single conjugate without any additional weakness/disadvantage. All the components of evans blue-indocyanine green-$^{99m}Tc$-human serum albumin are safe and of low cost, and they have already been clinically used. This conjugate was stable in the serum, it showed a long retention time in the lymphatic system and the lymph nodes showed a much higher signal-to-noise ratio after the conjugate was injected intradermally into the paw of mice. Both the single-photon emission computed tomography and near-infrared fluorescent images of the mice were successfully obtained at the same time as the excised sentinel lymph nodes showed blue color. The visual color, near-infrared fluorescence and gamma ray from this agent could be complementary for each other in all the steps of sentinel lymph node sampling: exploring and planning sentinel lymph node before excision with visualization of the exact sentinel lymph node location during an operation. Therefore, the triple modal agent will possibly be very ideal for sentinel lymph node mapping because of the high signal-to-noise ratio for non-invasive imaging and its complementary multimodal nature, easy preparation and safety. It is promising for clinical applications and it may have great advantages over the traditional single modal methods.

Thalamo-cortical system involving higher-order nuclei in patients with first-episode psychosis

  • Cho, Kang Ik K.;Kwak, Yoo Bin;Hwang, Wu Jeong;Lee, Junhee;Kim, Minah;Lee, Tae Young;Kwon, Jun Soo
    • BMB Reports
    • /
    • v.51 no.9
    • /
    • pp.427-428
    • /
    • 2018
  • Based on the piling reports of disruptions in the thalamus of patients with schizophrenia, the alteration in the thalamo-cortical system has been regarded as the core pathophysiology. As the thalamus is composed of distinctive nuclei with different cytoarchitecture and cortical connections, nuclei specific investigations have been actively conducted in post-mortem studies. In addition, the importance of early changes has been highlighted, which in turn has led to investigations of the thalamo-cortical system using non-invasive neuroimaging methods. From this perspective, the early structural changes in the thalamo-cortical system, such as the thalamo-cortical connection and nuclei specific microstructural changes (which are coherent with findings from post-mortem methods) will be briefly discussed. The main findings, which are the reduced thalamo-prefrontal connection and reduced microstructural complexity in the higher-order nuclei detected in first-episode psychosis patients, suggest the occurrence of early alterations within and between the communication hub of the brain and cortex. These findings suggest not only directions for further studies for unveiling the thalamo-cortical system related pathophysiology, but also the possibility of using the reduced microstructural complexity in the higher order nucleus as a biomarker for schizophrenia.