• Title/Summary/Keyword: Multimodal Brain Image

Search Result 13, Processing Time 0.018 seconds

Brain MR Multimodal Medical Image Registration Based on Image Segmentation and Symmetric Self-similarity

  • Yang, Zhenzhen;Kuang, Nan;Yang, Yongpeng;Kang, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1167-1187
    • /
    • 2020
  • With the development of medical imaging technology, image registration has been widely used in the field of disease diagnosis. The registration between different modal images of brain magnetic resonance (MR) is particularly important for the diagnosis of brain diseases. However, previous registration methods don't take advantage of the prior knowledge of bilateral brain symmetry. Moreover, the difference in gray scale information of different modal images increases the difficulty of registration. In this paper, a multimodal medical image registration method based on image segmentation and symmetric self-similarity is proposed. This method uses modal independent self-similar information and modal consistency information to register images. More particularly, we propose two novel symmetric self-similarity constraint operators to constrain the segmented medical images and convert each modal medical image into a unified modal for multimodal image registration. The experimental results show that the proposed method can effectively reduce the error rate of brain MR multimodal medical image registration with rotation and translation transformations (average 0.43mm and 0.60mm) respectively, whose accuracy is better compared to state-of-the-art image registration methods.

Development of a Brain Phantom for Multimodal Image Registration in Radiotherapy Treatment Planning

  • H. S. Jin;T. S. Suh;R. H. Juh;J. Y. Song;C. B. Y. Choe;Lee, H .G.;C. Kwark
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.450-453
    • /
    • 2002
  • In radiotherapy treatment planning, it is critical to deliver the radiation dose to tumor and protect surrounding normal tissue. Recent developments in functional imaging and radiotherapy treatment technology have been raising chances to control tumor saving normal tissues. A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using surface matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods, Pb rods for CT, MR, and SPECT imaging, respectively. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. For an optimization algorithm of image registration, we used Downhill simplex algorithm suggested as a fast surface matching algorithm. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom and minimized cost functions of the optimization algorithm. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process. The errors of image registration of CT-MR and CT-SPECT were within 2mm and 4mm, respectively. Since these errors were considered within a reasonable margin from the phantom study, the phantom is expected to be used for conventional image registration between multimodal image datasets..

  • PDF

Accuracy Evaluation of Three-Dimensional Multimodal Image Registration Using a Brain Phantom (뇌팬톰을 이용한 삼차원 다중영상정합의 정확성 평가)

  • 진호상;송주영;주라형;정수교;최보영;이형구;서태석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.33-41
    • /
    • 2004
  • Accuracy of registration between images acquired from various medical image modalities is one of the critical issues in radiation treatment planing. In this study, a method of accuracy evaluation of image registration using a homemade brain phantom was investigated. Chamfer matching of CT-MR and CT-SPECT imaging was applied for the multimodal image registration. The accuracy of image correlation was evaluated by comparing the center points of the inserted targets of the phantom. The three dimensional root-mean-square translation deviations of the CT-MR and CT-SPECT registration were 2.1${\pm}$0.8 mm and 2.8${\pm}$1.4 mm, respectively. The rotational errors were < 2$^{\circ}$ for the three orthogonal axes. These errors were within a reasonable margin compared with the previous phantom studies. A visual inspection of the superimposed CT-MR and CT- SPECT images also showed good matching results.

Accuracy of image registration for radiation treatment planning using a brain phantom

  • Jin, Ho-Sang;Suh, Tae-Suk;Song, Ju-Young;Juh, Ra-Hyeong;Kwark, Chul-Eun;Lee, Hyoung-Koo;Choe, Bo-Young
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.106-106
    • /
    • 2002
  • Purpose: The purposes of our study are (1) to develop a brain phantom which can be used for multimodal image registration, (2) to evaluate the accuracy of image registration with the home-made phantom. Method: A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using chamfer matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods for CT, MR imaging and Pb rods for SPECT imaging. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process.

  • PDF

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul;Oh, Sung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.218-228
    • /
    • 2021
  • Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

Multimodal Data Fusion for Alzheimers Patients Using Dempster-Shafer Theory of Evidence

  • Majumder, Dwijesh Dutta;Bhattacharya, Nahua
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.713-718
    • /
    • 1998
  • The paper is part of an investigation by the authors on development of a knowledge based frame work for multimodal medical image in collaboration with the All India Institute of Medical Science, new Delhi. After presenting the key aspects of the Dempster-Shafer Evidence theory we have presented implementation of registration and fusion of T₁and T₂ weighted MR images and CT images of the brain of an Alzheimer's patient for minimising the uncertainty and increasing the reliability for dianostics and therapeutic planning.

  • PDF

Tumor Segmentation in Multimodal Brain MRI Using Deep Learning Approaches

  • Al Shehri, Waleed;Jannah, Najlaa
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.343-351
    • /
    • 2022
  • A brain tumor forms when some tissue becomes old or damaged but does not die when it must, preventing new tissue from being born. Manually finding such masses in the brain by analyzing MRI images is challenging and time-consuming for experts. In this study, our main objective is to detect the brain's tumorous part, allowing rapid diagnosis to treat the primary disease instantly. With image processing techniques and deep learning prediction algorithms, our research makes a system capable of finding a tumor in MRI images of a brain automatically and accurately. Our tumor segmentation adopts the U-Net deep learning segmentation on the standard MICCAI BRATS 2018 dataset, which has MRI images with different modalities. The proposed approach was evaluated and achieved Dice Coefficients of 0.9795, 0.9855, 0.9793, and 0.9950 across several test datasets. These results show that the proposed system achieves excellent segmentation of tumors in MRIs using deep learning techniques such as the U-Net algorithm.

Multimodal Brain Image Registration based on Surface Distance and Surface Curvature Optimization (표면거리 및 표면곡률 최적화 기반 다중모달리티 뇌영상 정합)

  • Park Ji-Young;Choi Yoo-Joo;Kim Min-Jeong;Tae Woo-Suk;Hong Seung-Bong;Kim Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.11A no.5
    • /
    • pp.391-400
    • /
    • 2004
  • Within multimodal medical image registration techniques, which correlate different images and Provide integrated information, surface registration methods generally minimize the surface distance between two modalities. However, the features of two modalities acquired from one subject are similar. So, it can improve the accuracy of registration result to match two images based on optimization of both surface distance and shape feature. This research proposes a registration method which optimizes surface distance and surface curvature of two brain modalities. The registration process has two steps. First, surface information is extracted from the reference images and the test images. Next, the optimization process is performed. In the former step, the surface boundaries of regions of interest are extracted from the two modalities. And for the boundary of reference volume image, distance map and curvature map are generated. In the optimization step, a transformation minimizing both surface distance and surface curvature difference is determined by a cost function referring to the distance map and curvature map. The applying of the result transformation makes test volume be registered to reference volume. The suggested cost function makes possible a more robust and accurate registration result than that of the cost function using the surface distance only. Also, this research provides an efficient means for image analysis through volume visualization of the registration result.

Methodological Review on Functional Neuroimaging Using Positron Emission Tomography (뇌기능 양전자방출단층촬영영상 분석 기법의 방법론적 고찰)

  • Park, Hae-Jeong
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.71-77
    • /
    • 2007
  • Advance of neuroimaging technique has greatly influenced recent brain research field. Among various neuroimaging modalities, positron emission tomography has played a key role in molecular neuroimaging though functional MRI has taken over its role in the cognitive neuroscience. As the analysis technique for PET data is more sophisticated, the complexity of the method is more increasing. Despite the wide usage of the neuroimaging techniques, the assumption and limitation of procedures have not often been dealt with for the clinician and researchers, which might be critical for reliability and interpretation of the results. In the current paper, steps of voxel-based statistical analysis of PET including preprocessing, intensity normalization, spatial normalization, and partial volume correction will be revisited in terms of the principles and limitations. Additionally, new image analysis techniques such as surface-based PET analysis, correlational analysis and multimodal imaging by combining PET and DTI, PET and TMS or EEG will also be discussed.

A Triple Residual Multiscale Fully Convolutional Network Model for Multimodal Infant Brain MRI Segmentation

  • Chen, Yunjie;Qin, Yuhang;Jin, Zilong;Fan, Zhiyong;Cai, Mao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.962-975
    • /
    • 2020
  • The accurate segmentation of infant brain MR image into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is very important for early studying of brain growing patterns and morphological changes in neurodevelopmental disorders. Because of inherent myelination and maturation process, the WM and GM of babies (between 6 and 9 months of age) exhibit similar intensity levels in both T1-weighted (T1w) and T2-weighted (T2w) MR images in the isointense phase, which makes brain tissue segmentation very difficult. We propose a deep network architecture based on U-Net, called Triple Residual Multiscale Fully Convolutional Network (TRMFCN), whose structure exists three gates of input and inserts two blocks: residual multiscale block and concatenate block. We solved some difficulties and completed the segmentation task with the model. Our model outperforms the U-Net and some cutting-edge deep networks based on U-Net in evaluation of WM, GM and CSF. The data set we used for training and testing comes from iSeg-2017 challenge (http://iseg2017.web.unc.edu).