• 제목/요약/키워드: Multilevel converter

검색결과 204건 처리시간 0.021초

Improved Pre-charging Method for MMC-Based HVDC Systems Operated in Nearest Level Control

  • Kim, Kyo-Min;Kim, Jae-Hyuk;Kim, Do-Hyun;Han, Byung-Moon;Lee, Jun-Young
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.127-135
    • /
    • 2017
  • Recently the researches on modular multi-level converter (MMC) are being highlighted because high quality and efficient power transmission have become key issues in high voltage direct current (HVDC) systems. This paper proposes an improved pre-charging method for the sub-module (SM) capacitor of MMC-based HVDC systems, which operates in the nearest level control (NLC) modulation and does not need additional circuits or pulse width modulation (PWM) techniques. The feasibility of the proposed method was verified through computer simulations for a scaled 3-phase 10kVA MMC with 12 SMs per each arm. Hardware experiments with a scaled prototype have also been performed in the lab to confirm the simulation results.

수중 음향센서용 전력증폭기를 위한 멀티레벨 컨버터의 제어 알고리즘 (Control Algorithm of Multilevel Converter for Power Amplifier of Underwater Acoustic Sensor)

  • 심재혁;김인동;노의철;문원규;김원호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.399-400
    • /
    • 2013
  • 본 논문에서는 수중음향 센서를 위한 전력증폭기용 전원회로로 멀티레벨 가변전압출력 AC-DC 컨버터의 제어 알고리즘을 제안한다. 제안하는 제어 알고리즘은 최종 출력으로 5-레벨 가변전압을 얻기 위한 2대의 Flying capacitor 3-level converter의 전력 균등분담 제어를 위해 사용되며, 플라잉 커패시터의 전압 밸런싱 제어를 위해 사용된다. 본 논문에서 제안하는 제어 알고리즘은 수중음향 센서를 위한 전력증폭기용 전원회로에서 유용하게 사용될 것으로 예상한다.

  • PDF

DC 전력망 구축을 위한 VPI 제어 기반 MMC-HVDC 시스템의 순환전류 제어 기법 (Circulating Current Control of a Modular Multi-level Converter(MMC)-HVDC System based on VPI(Vector-PI) Control for DC Power Network)

  • 김시환;이준선;조영표;김래영
    • 전력전자학회논문지
    • /
    • 제22권3호
    • /
    • pp.263-269
    • /
    • 2017
  • This paper proposes a novel circulating current control method for an MMC-HVDC system based on Vector PI control. The method can suppress second-order harmonics of the circulating currents under balanced and unbalanced grid conditions. The proposed method is robust to grid frequency variation. The effectiveness of the proposed method is verified through frequency response and time domain simulation.

수중 음향센서용 전력증폭기를 위한 멀티레벨 전원회로 설계 (Design of Multilevel-converter Power Supply for Power Amplifier of Underwater Acoustic Sensor)

  • 최승수;김진영;송승민;김인동;문원규;김원호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 추계학술대회 논문집
    • /
    • pp.161-162
    • /
    • 2015
  • 본 논문은 수중음향센서용 전력증폭기를 위한 멀티레벨 가변 출력전압 AC/DC 컨버터를 제안한다. 제안하는 AC/DC 컨버터는 멀티레벨 가변출력전압을 얻기 위해 2개의 flying-capacitor 3-level converters와 하나의 다이오드 브리지 회로로 구성되어 있다. 또한 본 논문에서는 제안하는 AC/DC 컨버터의 상세 회로도와 설계 가이드라인을 제시하였다.

  • PDF

Calculation of Losses in VSC-HVDC based on MMC Topology

  • Kim, Chan-ki;Lee, Seong-doo
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권2호
    • /
    • pp.47-53
    • /
    • 2018
  • VSC technology is now well established in HVDC and is, in many respects, complementary to the older Line Commutated Converter (LCC) technology. Despite the various advantages of VSC technology, VSC HVDC stations have higher power losses than LCC stations. Although the relative advantages and disadvantages are well known within the industry, there have been very few attempts to quantify these factors on an objective basis. This paper describes methods to determine the operating losses of every component in the valve of VSC-HVDC system. The losses of the valve, including both conduction losses and switching losses, are treated in detail.

A Fault Tolerant Control Technique for Hybrid Modular Multi-Level Converters with Fault Detection Capability

  • Abdelsalam, Mahmoud;Marei, Mostafa Ibrahim;Diab, Hatem Yassin;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.558-572
    • /
    • 2018
  • In addition to its modular nature, a Hybrid Modular Multilevel Converter (HMMC) assembled from half-bridge and full-bridge sub-modules, is able to block DC faults with a minimum number of switching devices, which makes it attractive for high power applications. This paper introduces a control strategy based on the Root-Least Square (RLS) algorithm to estimate the capacitor voltages instead of using direct measurements. This action eliminates the need for voltage transducers in the HMMC sub-modules and the associated communication link with the central controller. In addition to capacitor voltage balancing and suppression of circulating currents, a fault tolerant control unit (FTCU) is integrated into the proposed strategy to modify the parameters of the HMMC controller. On advantage of the proposed FTCU is that it does not need extra components. Furthermore, a fault detection unit is adapted by utilizing a hybrid estimation scheme to detect sub-module faults. The behavior of the suggested technique is assessed using PSCAD offline simulations. In addition, it is validated using a real-time digital simulator connected to a real time controller under various normal and fault conditions. The proposed strategy shows robust performance in terms of accuracy and time response since it succeeds in stabilizing the HMMC under faults.

근사 계단 제어 변조로 동작하는 모듈형 멀티 레벨 컨버터를 위한 새로운 초기 충전 기법 (New Pre-charging Method for Modular Multi-level Converter Operated in Nearest Level Control Modulation)

  • 김교민;김재혁;김도현;한병문
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1655-1663
    • /
    • 2016
  • Recently the researches on Modular Multi-level Converter (MMC) are being highlighted because high quality and efficient power transmission are key issues in the High Voltage Direct Current (HVDC) transmission system. This paper proposes an improved pre-charging method for the sub-module capacitors in MMC that operates in Nearest Level Control (NLC) modulation. The proposed method does not require additional circuits or Pulse Width Modulation (PWM) techniques. The feasibility of proposed method was verified through computer simulations for a scaled 3-phase 10kVA MMC with 12 sub-modules per each arm. Hardware experiments with a scaled prototype were performed in the lab to confirm the simulation results.

Finite State Model-based Predictive Current Control with Two-step Horizon for Four-leg NPC Converters

  • Yaramasu, Venkata;Rivera, Marco;Narimani, Mehdi;Wu, Bin;Rodriguez, Jose
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1178-1188
    • /
    • 2014
  • This study proposes a finite-state model predictive controller to regulate the load current and balance the DC-link capacitor voltages of a four-leg neutral-point-clamped converter. The discrete-time model of the converter, DC-link, inductive filter, and load is used to predict the future behavior of the load currents and the DC-link capacitor voltages for all possible switching states. The switching state that minimizes the cost function is selected and directly applied to the converter. The cost function is defined to minimize the error between the predicted load currents and their references, as well as to balance the DC-link capacitor voltages. Moreover, the current regulation performance is improved by using a two-step prediction horizon. The feasibility of the proposed predictive control scheme for different references and loads is verified through real-time implementation on the basis of dSPACEDS1103.

Capacitor Voltage Boosting and Balancing using a TLBC for Three-Level NPC Inverter Fed RDC-less PMSM Drives

  • Halder, Sukanta;Kotturu, Janardhana;Agarwal, Pramod;Srivastava, Satya Prakash
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.432-444
    • /
    • 2018
  • This paper presents a capacitor voltage balancing topology using a three-level boost converter (TLBC) for a neutral point clamped (NPC) three-level inverter fed surface permanent magnet synchronous motor drive (SPMSM). It enhanced the performance of the drive in terms of its voltage THD and torque pulsation. The main attracting feature of the proposed control is the boosting of the input voltage and at the same time the balancing of the capacitor voltages. This control also reduces the computational complexity. For the purpose of close loop vector control, a software based cost effective resolver to digital converter RDC-less estimation is implemented to calculate the speed and position. The proposed drive is simulated in the MATLAB/SIMULINK environment and an experimental investigation using dSPACE DS1104 validates the proposed drive system at different operating condition.

예비 서브모듈을 활용한 모듈형 멀티레벨 컨버터의 스위칭 주파수 저감 기법 (Switching Frequency Reduction Method for Modular Multi-level Converter Utilizing Redundancy Sub-module)

  • 이윤석;유승환;최종윤;박용희;한병문;윤영두
    • 전기학회논문지
    • /
    • 제63권12호
    • /
    • pp.1640-1648
    • /
    • 2014
  • This paper proposes a switching frequency reduction method for MMC (Modular Multilevel Converter) utilizing redundancy operation of sub-module, which can offer reduction of voltage harmonics and switching loss. The feasibility of proposed method was verified through computer simulations with PSCAD/EMTDC software. Based on simulation analysis, a hardware scaled-model of 10kVA, DC-1000V MMC was designed and manufactured in the lab. Various experiments were conducted to verify the feasibility of proposed method in the actual hardware system. The hardware scaled-model can be effectively utilized for analyzing the performance of MMC according to the modulation scheme and redundancy operation.