• 제목/요약/키워드: Multilayer composite

검색결과 78건 처리시간 0.018초

Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods

  • Murat Yaylaci;Ecren Uzun Yaylaci;Mehmet Emin Ozdemir;Sevval Ozturk;Hasan Sesli
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.565-575
    • /
    • 2023
  • This study represents a numerical research in vibration and buckling of functionally graded material (FGM) beam comprising edge crack by using finite element method (FEM) and multilayer perceptron (MLP). It is assumed that the material properties change only according to the exponential distributions along the beam thickness. FEM and MLP solutions of the natural frequencies and critical buckling load are obtained of the cracked FGM beam for clamped-free (C-F), hinged-hinged (H-H), and clamped-clamped (C-C) boundary conditions. Numerical results are obtained to show the effects of crack location (c/L), material properties (E2/E1), slenderness ratio (L/h) and end supports on the bending vibration and buckling properties of cracked FGM beam. The FEM analysis used in this paper was verified with the literature, and the fundamental frequency ratio ($\overline{P_{cr}}$) and critical buckling load ratio ($\overline{{\omega}}$) results obtained were compared with FEM and MLP. The results obtained are quite compatible with each other.

Nonlinear vibration and primary resonance of multilayer functionally graded shallow shells with porous core

  • Kamran Foroutan;Liming Dai
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.335-351
    • /
    • 2023
  • This research studies the primary resonance and nonlinear vibratory responses of multilayer functionally graded shallow (MFGS) shells under external excitations. The shells considered with functionally graded porous (FGP) core and resting on two types of nonlinear viscoelastic foundations (NVEF) governed by either a linear model with two parameters of Winkler and Pasternak foundations or a nonlinear model of hardening/softening cubic stiffness augmented by a Kelvin-Voigt viscoelastic model. The shells considered have three layers, sandwiched by functionally graded (FG), FGP, and FG materials. To investigate the influence of various porosity distributions, two types of FGP middle layer cores are considered. With the first-order shear deformation theory (FSDT), Hooke's law, and von-Kármán equation, the stress-strain relations for the MFGS shells with FGP core are developed. The governing equations of the shells are consequently derived. For the sake of higher accuracy and reliability, the P-T method is implemented in numerically analyzing the vibration, and the method of multiple scales (MMS) as one of the perturbation methods is used to investigate the primary resonance. The results of the present research are verified with the results available in the literature. The analytical results are compared with the P-T method. The influences of material, geometry, and nonlinear viscoelastic foundation parameters on the responses of the shells are illustrated.

Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate

  • Kaci, D. Ait;Madani, K.;Mokhtari, M.;Feaugas, X.;Touzain, S.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.679-699
    • /
    • 2017
  • The aim of this study is to perform a finite element analysis of the Von Mises stresses distribution in the adhesive layer and of the J-Integral for a damaged plate repaired by a composite patch. Firstly, we study the effect of the fiber orientation, especially the position of the layers that have orientation angle different of $0^{\circ}$ from the first layer which is in all cases of our study oriented at ($0^{\circ}$) on the J-Integral. Secondly, we evaluate the effects of the mechanical properties of the patch and the use of a hybrid patch on the reduction of stresses distribution and J-Integral. The results show clearly that the stacking sequence for the composite patch must be selected to absorb optimally the stresses from the damaged area and to position the various layers of the composite under the first layer whose fibers orientation will remain in all cases equal to $0^{\circ}$. The use of a hybrid composite reduces significantly the J-Integral and the stresses in both damaged plate and the adhesive layer.

Effective Properties of Multi-layered Multi-functional Composites

  • Kim, Byeong-Chan;Baltazar, Arturo;Kim, Jin-Yeon
    • Advanced Composite Materials
    • /
    • 제18권2호
    • /
    • pp.153-166
    • /
    • 2009
  • A matrix method for evaluating effective electro-magneto-thermo-elastic properties of a generally anisotropic multilayered composite is presented. Physical variables are categorized into two groups: one that satisfies the continuity across the interface between layers and another that satisfies an average inter-layer compatibility (which is also exact). The coupled electro-magneto-thermo-elastic constitutive equation is accordingly reassembled into submatrices, which leads to the derivation of concise and exact matrix expressions for effective properties of a multilayered composite having the coupled physical effects. Comparing the results for a purely elastic multiplayer with those from other theoretical approaches validates the developed method. Examples are given for a PZT-graphite/epoxy composite and a $BaTiO_3-CoFe_2O_4$ multiplayer which exhibit piezo-thermoelastic and magnetoelectric properties, respectively. The result shows how a strong magnetoelectric effect can be achieved by combining piezoelectric and piezomagnetic materials in a multilayered structure. The magnetoelectric coefficient of the $BaTiO_3-CoFe_2O_4$ multiplayer is compared with those for fibrous and particulate composites fabricated with the same constituents.

다층금속 경사재의 변형양태의 수치적연구 (Numerical simulation for Deformation Shape of Declined Multilayer Metals Material)

  • 정태훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.124-128
    • /
    • 2004
  • By the use of a similar numerical method as that in the previous paper, the forming limit strain by coaling method of clad sheet metals is investigated, in which the FEM is applied and J2G(J$_2$-Gotoh's corner theory) is utilized as the plasticity constitutive equation. Declined Multilayer Metals Materials are stretched in a plane-strain state, with various work-hardening exponent n-values and thicknesses of each layer. Processes of shear-band formation in such composite sheets are clearly illustrated. It is concluded that, in the bonded state, the higher limiting strain of one layer is reduced due to the lower limiting strain of the other layer and vice versa, and does not necessarily obey the rule of linear combination of the limiting strain of each layer weighted according thickness.

  • PDF

다중 코팅된 $Si_3N_4-TiC$ 세라믹의 특성 (Characteristics of Multilayer Coated $Si_3N_4-TiC$ Ceramic)

  • 김동원;천성순
    • 한국재료학회지
    • /
    • 제1권1호
    • /
    • pp.9-17
    • /
    • 1991
  • 화학증착법에 의해 $Si_3N_4-TiC$ 복합재료 위에 코팅된 TiC 박막은 TiN 박막에 비하여 우수한 미세구조와 열충격저항, 계면결합을 가지고 있는 것으로 나타났다. 화학증착법에 의한 TiN 박막은 TiC 박막에 비해 강철과의 마찰계수가 작고 화학적으로 안정하였다. 실험결과는 코팅된 절삭공구가 우수한 내 마모성을 갖고 있는 것으로 나타났다. 또한, 다중 코팅된 절삭공구는 단일 코팅된 공구보다 우수한 내 마모성을 보였다

  • PDF

Thermoelastic analysis of rotating FGM thick-walled cylindrical pressure vessels under bi-directional thermal loading using disk-form multilayer

  • Fatemeh Ramezani;Mohammad Zamani Nejad
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.139-151
    • /
    • 2024
  • In this research, a semi-analytical solution is presented for computing mechanical displacements and thermal stresses in rotating thick cylindrical pressure vessels made of functionally graded material (FGM). The modulus of elasticity, linear thermal expansion coefficient, and density of the cylinder are assumed to change along the axial direction as a power-law function. It is also assumed that Poisson's ratio and thermal conductivity are constant. This cylinder was subjected to non-uniform internal pressure and thermal loading. Thermal loading varies in two directions. The governing equations are derived by the first-order shear deformation theory (FSDT). Using the multilayer method, a functionally graded (FG) cylinder with variable thickness is divided into n homogenous disks, and n sets of differential equations are obtained. Applying the boundary conditions and continuity conditions between the layers, the solution of this set of equations is obtained. To the best of the researchers' knowledge, in the literature, there is no study carried out bi-directional thermoelastic analysis of clamped-clamped rotating FGM thick-walled cylindrical pressure vessels under variable pressure in the longitudinal direction.

Effect of Silicon Nitride Whisker Content on the Flexural Strength of Silicon Nitride-Boron Nitride-Silicon Carbide Multi-Layer Composites

  • Park, Dong-Soo;Cho, Byung-Wook
    • 한국세라믹학회지
    • /
    • 제40권9호
    • /
    • pp.832-836
    • /
    • 2003
  • Multi-layer ceramic composites were prepared by tape casting followed by hot pressing using silicon nitride layer with silicon nitride whiskers, silicon nitride layer with silicon carbide particles and boron nitride-alumina layer. The whiskers were aligned during the casting. As the whisker content of the silicon nitride layer was increased up to 10 wt%, the flexural strength of the multi-layer composite was increased. However, further increase of the whisker content in the layer resulted in a rapid decrease of the strength of the composite. The results suggest that the strength of multi-layer ceramic composite showing non-catastrophic failure behavior can be significantly improved by incorporating the aligned whiskers in the layers.

Nonlinear bending of multilayer functionally graded graphene-reinforced skew microplates under mechanical and thermal loads using FSDT and MCST: A study in large deformation

  • J. Jenabi;A.R. Nezamabadi;M. Karami Khorramabadi
    • Structural Engineering and Mechanics
    • /
    • 제90권3호
    • /
    • pp.219-232
    • /
    • 2024
  • In current study, for the first time, Nonlinear Bending of a skew microplate made of a laminated composite strengthened with graphene nanosheets is investigated. A mixture of mechanical and thermal stresses is applied to the plate, and the reaction is analyzed using the First Shear Deformation Theory (FSDT). Since different percentages of graphene sheets are included in the multilayer structure of the composite, the characteristics of the composite are functionally graded throughout its thickness. Halpin-Tsai models are used to characterize mechanical qualities, whereas Schapery models are used to characterize thermal properties. The microplate's non-linear strain is first calculated by calculating the plate shear deformation and using the Green-Lagrange tensor and von Karman assumptions. Then the elements of the Couple and Cauchy stress tensors using the Modified Coupled Stress Theory (MCST) are derived. Next, using the Hamilton Principle, the microplate's governing equations and associated boundary conditions are calculated. The nonlinear differential equations are linearized by utilizing auxiliary variables in the nonlinear solution by applying the Frechet approach. The linearized equations are rectified via an iterative loop to precisely solve the problem. For this, the Differential Quadrature Method (DQM) is utilized, and the outcomes are shown for the basic support boundary condition. To ascertain the maximum values of microplate deflection for a range of circumstances-such as skew angles, volume fractions, configurations, temperatures, and length scales-a parametric analysis is carried out. To shed light on how the microplate behaves in these various circumstances, the resulting results are analyzed.

다층 PCB의 두께 예측을 위한 실험식 도출 연구 (An Empirical Formulation for Predicting the Thickness of Multilayer PCB)

  • 김남훈;한관희;이민수;김현호;신광복
    • Composites Research
    • /
    • 제35권3호
    • /
    • pp.182-187
    • /
    • 2022
  • 본 논문은 다층 PCB에 사용되는 프리프레그의 물성을 파악하여 제시한 두께 실험식을 통해 PCB의 두께를 예측하기 위한 연구를 수행하였다. 프리프레그는 물성과 동박 잔존율에 의해서 PCB 제작시 두께가 감소하기 때문에 두께 실험식을 통한 정확한 PCB의 두께 예측이 필요하다. 두께 실험식에 사용되는 프리프레그의 밀도를 파악하기 위해 질량 및 두께를 측정하여 밀도를 도출하였다. 이후 CCL을 제작하기 위해 프리프레그와 동박을 적층하여 핫 프레스기를 사용하였고 광학현미경과 마이크로미터를 사용하여 두께를 측정하였다. 또한 동박 잔존율에 따른 두께 변화를 측정하기 위해 회로밀도를 다르게 구성하여 8층 PCB를 설계하였고 두께 측정 결과와 두께 실험식으로 도출된 두께를 비교하여 두께 실험식을 검증하였다. 비교 결과 CCL의 경우 2.56%, 다층 PCB의 경우 4.48%의 오차를 보였고 이를 통해 두께실험식의 신뢰성을 확인하였다.