• 제목/요약/키워드: Multilayer EL device

검색결과 15건 처리시간 0.026초

TPD와 P3HT의 블렌드한 다층막 EL 소자의 전기-광학적 특성 (The Electro-optical Propeties of Multilayer EL devices by blending TPD with P3TH as Emitting layer)

  • 김대중;구할본;김형곤;박계춘
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.542-545
    • /
    • 2002
  • High performance organic electroluminescnet(EL) devices which are composed of organic thin multilayer films are fabricated. The basic structure is ITO/Emitting layer/LiF/Al in which have a blended emitting layer. The emitting layer is consisted of a host material(N,N' diphenyl-N,N' (3-methyl phenyl)-l,l'-biphenyl-4,4'diamine)(TPD)) and a guest emitting material(poly(3-hexylthiophehe)(P3HT)). We think that the energy transfer in blending layer occurred from TPD to P3HT. Red emitting multilayer EL devices were fabricated using tris(8-hydroxyqunolinate) aluminum$(Alq_3)$ as electron transport material. The device structure of ITO/blending layer(TPD+P3HT)$/Alq_3$/LiF/Al was employed. In the Voltage-current-luminance characteristics of multilayer device, the device tum on at the 2V and the luminance of $10{\mu}W/cm^2$ obtain at l0V. Red emission peak at 640nm was observed with this device structure. We have presented evidence that the excitation energy migration between a polymeric host and guest has to be explained. And by using multilayer, the red light emitting EL device enhances not only Voltage-current-luminance characteristic but also stability of device.

  • PDF

P3HT를 이용한 다층막 전계발광 소자의 전기-광학적 특성 (The Electro-optical Properties of Multilayer EL Devices with P3HT as Emitting layer)

  • 김대중;김주승;김정호;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.1018-1021
    • /
    • 2003
  • We have synthesized poly(3-hexylthiophene) and studied the optical properties of P3HT for applying to the red emitting materials of organic electroluminescent device. Usually, an organic EL device is composed of single layer like anode/emitting layer/cathode, but additional layer such as hole transport, electron transport and buffer layer is deposited to improve device efficiency. In this study, Multilayer EL devices were fabricated using tris(8-hydroxyquinolinate) aluminum($Alq_3$) as electron transport material, (N,N'-diphenyl-N,,N'(3-methylphenyl)-1,1'-biphenyl-4,4'diamine))(TPD) as hole transport/electron blocking materials and LiF as buffer layer. That is, a device structure of ITO/blending layer(TPD+P3HT)/$Alq_3$/LiF/Al was employed. In the Multilayer device, the luminance of $10{\mu}W/cm^2$ obtained at 10V. And, we present the experimental evidence of the enhancement of the Foster energy transfer interaction in emitting layer.

  • PDF

다층구조 OLED소자의 발광특성 (Emission Characteristics of Multilayer Structure OLED)

  • 최영일;조수영
    • 전자공학회논문지 IE
    • /
    • 제48권4호
    • /
    • pp.25-29
    • /
    • 2011
  • 유기 EL소자는 제작이 쉽고 휘도가 높아 CRT와 LED 대신 평판 디스플레이 패널의 광원으로써 많이 연구되어 지고 있으며, OLED 소자중 청색 OLED는 풀컬러 적용 어플리케이션에 적용할 수 있기 때문에 이에 대한 연구가 이루어 지고 있다. 본 연구에서는, 발광 소재로 PBD, Alq3를 사용하여 유기 EL 디바이스의 전기 발광 특성을 측정하였으며, 전류와 휘도는 전압과의 관계에서 알 수 있었고 휘도와 전류의 관계를 제시하였다.

Exciplex를 이용한 백색 유기 전계발광소자의 발광특성 (Emission Properties of White Light Emission Organic Electroluminescent Device using Exciplex Emission)

  • 김주승;김종욱;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제14권9호
    • /
    • pp.762-767
    • /
    • 2001
  • We report the white light emission from the multilayer organic electroluminescent(EL) device using exciplex emission. The exciplex at 500nm originated between poly(N-vinylcarvazole)(PVK) and 2,5-bis(5'-tert-butyl-2-benzoxazoly)thiophene(BBOT) and exciplex of 50nm originated from N,N'-diphenyl-N,N'-(3-methyphenyl)-1,1'-biphenyl-4,4'-diamine(TPD) and BBOT were observed. Also, the energy transfer from PVK to BBOT and poly(3-hexylthiophene)(P3HT) in mixed emitting materials was occurred. The electroluminescence(EL) spectra of organic EL device which have a device structure of ITO/CuPc(5nm)/emitting layer(100nm)/BBOT(30nm)/LiF(1.4nm)/Al(200nm) were slightly changed as a function of the applied voltage. The luminance fo 12.3 ${\mu}$W/$\textrm{cm}^2$ was achieved at 20V and EL spectrum measured at 20V corresponds to Commission Internationale de L\`Eclairage(CIE) coordinates of x=0.29 and y=0.353.

  • PDF

다층 유기 초박막 EL소자에 관한 연구 (A Study on Organic Multithin Layer EL Devices)

  • 조성렬;김종진;박종은;손원근;임기조;박수길;이주성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1516-1518
    • /
    • 1997
  • Recently lots of study on EL have been performed by other researcher. Organic multilayer system of TPD/$Alq3$ and Rhodamine 101 perchrolate/Alq3/ was constructed on ITO and finally Al as cathodic electrode. The thickness of emitting layer was $150{\AA}$ and device was fabricated by changing amount of dopant. AFM image for each surface morphology and EL spectra using fluoromax-2 was investigated. Electrical and emission properties of EL device was dependent on deposition method and condition.

  • PDF

다층막 구조를 이용한 유기 EL소자의 제작과 특성에 관한 연구 (Preparation and Characteristics of Organic Electroluminescence Devices Using Multilayer structure with Carrier Transport Materials)

  • 이상윤;김태완;최종선;김영관;김정수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.249-252
    • /
    • 1997
  • Electroluminescence(EL) devices based on organic thin layers have attracted lot of interests because of their possible application as large-area display-emitting display. One of the problems of such devices is lifetime of the cell, where the degradation of the cell is partially due to the crystalliyzation of organic layers. In large part, this problem can be solved by using a multilayer device structure prepared by vapor deposition technique. In this study, blue light-emitting multilayer organic electroluminescence devices were fabricated vsing Poly (9-vinylcarbaEole) (PVK) and 2- (4-tert-butylphenyl)-5-(4$^{#}$-bis-phenyl) 1,3,4-oxadiazole (PBO) as hole trasport and electron transport material, respectively, where trim(8-hyd roxyquinolinate) aluminum (Al $q_3$) was used as a luminescenct material. A cell structure of glass sub- strate/indume-tin-oxide(ITO)/PCK/Al $q_3$/PBD/Mg:In was employed. Blue emission peak at 510nm was observed with this cell structure.e.

  • PDF

다층막 구조를 이용한 유기 EL소자의 제작과 특성에 관한 연구 (Preparation and Characteristics of Organic Electroluminescence Devices using Multilayer Structure with Carrier Transport Materials)

  • 이상윤;김영관;김정수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1563-1565
    • /
    • 1997
  • Electroluminescence(EL)devices based on organic thin layers have attracted lot of interests because of their possible application as large-area light-emitting display. One of the problems of such devices is lifetime of the cell, where the degradation of the cell is partially due to the crystalliyzation of organic layers. In large part, this problem can be solved by using a multilayer device structure prepared by vapor deposition technique. In this study, blue lightemitting multilayer organic electroluminescence devices were fabricated using Poly (9-vinyl-carbazole) (PVK) and 2-(4'-tert-butylpheny])-5-(4"-bis-phenyl)1,3,4-oxadiazole (PBD) as hole trasport and electron transport material, respectively, where tris(8-hydroxyquinolinate) aluminum (Alq3) was used as a luminescenct material. A cell structure of glass substrate/indume-tin-oxide(ITO)/PVK/$Alq_3$/PBD/Mg:In was employed.

  • PDF

다층구조를 적용한 백색 전계발광소자의 발광효율 향상 (Enhancement of Emission Efficiency of Multilayer White Light Organic Electroluminescent Device)

  • 김주승;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 센서 박막재료
    • /
    • pp.27-31
    • /
    • 2001
  • We fabricated organic electroluminescent(EL) devices with mixed emitting layer of poly(N-vinylcarbazole)(PVK), 2,5-bis(5'-tert-butyl-2-benzoxazoly)thiophene(BBOT), N,N'-diphenyl-N,N'-(3-methyphenyl)-1,1'-biphenyl-4, 4'-diarnine(TPD) and poly(3-hexylthiophene)(P3HT). To improve the external quantum efficiency of EL devices, we added the functional layer to the devices such as LiF insulating layer, carrier confinement layer(BBOT) and hole injection layer(CuPc). In the ITO/emitting layer/Al device, the maximum quantum efficiency at 15V was $1.88{\times}10^{-5}%$. And then, it is increased by a factor of 27 to $5.2{\times}10^{-3}%$ in ITO/CuPc/emitting layer/BBOT/LiF/Al device at 15V.

  • PDF

($Bebq_2$박막의 제작 및 전기발광 특성 (The Preparation of $Bebq_2$ Thin Films and Their Electroluminescent Characteristics)

  • 권오관;김영관;하윤경;손병청
    • 한국응용과학기술학회지
    • /
    • 제16권1호
    • /
    • pp.41-44
    • /
    • 1999
  • Recently, high luminance and efficiency were realize in organic thin film electroluminescence (EL) cells with multilayer structures including an emitting layer (EML), hole transporting layer (HTL), and an electron transporting layer (ETL). In this study, Bis(10-hydroxybenzo[h]quinolinato)beryllium (Bebq2) was synthesized. PL and EL characteristics of their thin film were investigated by fabricating the devices having a structure of ITO/PVK/Bebq2/Al, ITO/PVK dispersed with TPD/Bebq2/Al. The EL color of these device was greenish and the wavelength of their EL peaks was located, respectly, at 495nm, and 492.5nm.

Ir$(ppy)_3$를 발광물질로 이용한 EL소자의 특성분석 (The characteristics of the electroluminescent devices using Ir$(ppy)_3$)

  • 김준호;김윤명;하윤경;김영관;김정수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.437-439
    • /
    • 2000
  • The internal quantum efficiency of EL devices using fluorescent organic materials is limited within 25% because of the triplet excitons which can hardly emit light. So there has been considerable interest in finding ways to obtain light emission from triplet excitons. One approach has been to add phosphorescent compounds to one of the layers in an EL device. Then triplet excitons can transfer to these phosphorescent molecules and emit light. In this study, multilayer organic light-emitting devices with phosphorescent emitter, tris (2-phenylpyridine)iridium ($Ir(ppy)_3$) were prepared. The device exhibited power luminous efficiency of 1.07 1m/W at the luminance of $61.6\;cd/m^2$ diriven at the voltage of 9 V and current density of $1.9mA/cm^2$. At the luminance of $100\;cd/m^2$, the luminous efficiency was obtained 1.05 lm/W with the voltage of 9.5 V and the corrent density of $2.8\;mA/cm^2$.

  • PDF