• Title/Summary/Keyword: Multihop Wireless Sensor Networks

Search Result 11, Processing Time 0.03 seconds

A MAC Protocol for Efficient Burst Data Transmission in Multihop Wireless Sensor Networks (멀티홉 무선 센서 네트워크에서 버스트 데이타의 효율적인 전송을 위한 프로토콜에 관한 연구)

  • Roh, Tae-Ho;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.3
    • /
    • pp.192-206
    • /
    • 2008
  • Multihop is the main communication style for wireless sensor networks composed of tiny sensor nodes. Until now, most applications have treated the periodic small sized sensing data. Recently, the burst traffic with the transient and continuous nature is increasingly introduced due to the advent of wireless multimedia sensor networks. Therefore, the efficient communication protocol to support this trend is required. In this paper, we propose a novel PIGAB(Packet Interval Gap based on Adaptive Backoff) protocol to efficiently transmit the burst data in multihop wireless sensor networks. The contention-based PIGAB protocol consists of the PIG(Packet Interval Gap) control algorithm in the source node and the MF(MAC-level Forwarding) algorithm in the relay node. The PIGAB is on basis of the newly proposed AB(Adaptive Backoff), CAB(Collision Avoidance Backoff), and UB(Uniform Backoff). These innovative algorithms and schemes can achieve the performance of network by adjusting the gap of every packet interval, recognizing the packet transmission of the hidden node. Through the simulations and experiments, we identify that the proposed PIGAB protocol considerably has the stable throughput and low latency in transmitting the burst data in multihop wireless sensor networks.

A GTS Scheduling Algorithm for Voice Communication over IEEE 802.15.4 Multihop Sensor Networks

  • Kovi, Aduayom-Ahego;Bleza, Takouda;Joe, Inwhee
    • International journal of advanced smart convergence
    • /
    • v.1 no.2
    • /
    • pp.34-38
    • /
    • 2012
  • The recent increase in use of the IEEE 802.15.4 standard for wireless connectivity in personal area networks makes of it an important technology for low-cost low-power wireless personal area networks. Studies showed that voice communications over IEEE 802.15.4 networks is feasible by Guaranteed Time Slot (GTS) allocation; but there are some constraints to accommodate voice transmission beyond two hops due to the excessive transmission delay. In this paper, we propose a GTS allocation scheme for bidirectional voice traffic in IEEE 802.15.4 multihop networks with the goal of achieving fairness and optimization of resource allocation. The proposed scheme uses a greedy algorithm to allocate GTSs to devices for successful completion of voice transmission with efficient use of bandwidth while considering closest devices with another factor for starvation avoidance. We analyze and validate the proposed scheme in terms of fairness and resource optimization through numeral analysis.

A Strike and Bargaining Routing Algorithm for Energy-Efficient Wireless Sensor Networks (에너지 효율적 무선 센서 네트워크를 위한 Strike and Bargaining 라우팅 기법)

  • Ko, Seung-Woo;Jeong, Jin Hong;Kim, Seong-Lyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.12
    • /
    • pp.1186-1194
    • /
    • 2012
  • In order to resolve the energy efficiency in wireless sensor networks, a multihop transmission technique is utilized. However, multihop transmission in wireless sensor networks (WSN) has pros and cons. It reduces total energy consumption, while it may cause a severe decrease in network lifetime. To solve this problem, we suggest the so called strike and bargaining algorithm (SBA). The routing path is determined by wages of nodes. Each node negotiates its wage with their neighbor nodes and determine a reasonable value to reach a optimally balanced point. By analysis and simulations, we show SBA can achieve a near optimal solution.

An Energy Efficient Localized Topology Control Algorithm for Wireless Multihop Networks

  • Shang, Dezhong;Zhang, Baoxian;Yao, Zheng;Li, Cheng
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.371-377
    • /
    • 2014
  • Localized topology control is attractive for obtaining reduced network graphs with desirable features such as sparser connectivity and reduced transmit powers. In this paper, we focus on studying how to prolong network lifetime in the context of localized topology control for wireless multi-hop networks. For this purpose, we propose an energy efficient localized topology control algorithm. In our algorithm, each node is required to maintain its one-hop neighborhood topology. In order to achieve long network lifetime, we introduce a new metric for characterizing the energy criticality status of each link in the network. Each node independently builds a local energy-efficient spanning tree for finding a reduced neighbor set while maximally avoiding using energy-critical links in its neighborhood for the local spanning tree construction. We present the detailed design description of our algorithm. The computational complexity of the proposed algorithm is deduced to be O(mlog n), where m and n represent the number of links and nodes in a node's one-hop neighborhood, respectively. Simulation results show that our algorithm significantly outperforms existing work in terms of network lifetime.

Energy and Delay Efficient Slot Reservation Mechanism for Multihop Wireless Sensor Networks (멀티 홉 무선 센서 네트워크에서 에너지 소모와 전송 지연에 효율적인 슬롯 예약 메커니즘)

  • Park, Hyun Joo;Kim, Seong Cheol;Jeon, Jun Heon;Kim, Hye-Yun;Kim, Joong Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.102-105
    • /
    • 2014
  • 일반적으로 무선 센서네트워크에서 각 센서 노드들에서 생성된 데이터는 목적지 노드 즉, 싱크(sink) 노드로 전송되어진다. 본 논문에서는 이처럼 데이터 전송이 몰리게 되는 sink 노드 근처에서 노드들 사이에 전송된 데이터 패킷의 충돌을 줄임으로 에너지 효율과 지연의 성능을 향상시킬 수 있는 TDMA 기반의 MAC 프로토콜을 제안한다. 전송할 데이터를 가지는 노드들은 먼저 싱크 노드에게 자신이 전송할 데이터의 양을 포함하는 RTS 패킷을 전송한다. 이 RTS 패킷을 받은 싱크 노드는 각 노드들에게 전송할 수 있는 전송 스케줄을 노드들에게 보내고, 이 스케줄을 받은 각 노드들은 전송 스케줄에 맞추어 자신들에게 할당된 슬롯에 데이터 패킷을 전송함으로 충돌 없이 bursty데이터를 전송한다. 이 방법을 통하여 각 노드들은 동시에 멀티 슬롯을 할당 받아 여러 패킷을 전송할 수 있다. 따라서 버스티한 트래픽 전송에서 지연(Delay)을 줄이는 동시에 충돌을 없애 데이터 전송 효율을 높일 수 있다.

  • PDF

Maximizing Information Transmission for Energy Harvesting Sensor Networks by an Uneven Clustering Protocol and Energy Management

  • Ge, Yujia;Nan, Yurong;Chen, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1419-1436
    • /
    • 2020
  • For an energy harvesting sensor network, when the network lifetime is not the only primary goal, maximizing the network performance under environmental energy harvesting becomes a more critical issue. However, clustering protocols that aim at providing maximum information throughput have not been thoroughly explored in Energy Harvesting Wireless Sensor Networks (EH-WSNs). In this paper, clustering protocols are studied for maximizing the data transmission in the whole network. Based on a long short-term memory (LSTM) energy predictor and node energy consumption and supplement models, an uneven clustering protocol is proposed where the cluster head selection and cluster size control are thoroughly designed for this purpose. Simulations and results verify that the proposed scheme can outperform some classic schemes by having more data packets received by the cluster heads (CHs) and the base station (BS) under these energy constraints. The outcomes of this paper also provide some insights for choosing clustering routing protocols in EH-WSNs, by exploiting the factors such as uneven clustering size, number of clusters, multiple CHs, multihop routing strategy, and energy supplementing period.

A Measurement Study of TCP over RPL in Low-power and Lossy Networks

  • Kim, Hyung-Sin;Im, Heesu;Lee, Myung-Sup;Paek, Jeongyeup;Bahk, Saewoong
    • Journal of Communications and Networks
    • /
    • v.17 no.6
    • /
    • pp.647-655
    • /
    • 2015
  • Low-power and lossy networks (LLNs) comprised of thousands of embedded networking devices can be used in a variety of applications, such as smart grid automated metering infrastructures (AMIs) and wireless sensor networks. Connecting these LLNs to the Internet has even greater potential, leading to the emerging concept of the Internet of Things (IoT). With the goal of integrating LLNs into IoT, the IETF has recently standardized RPL and 6LoWPAN to allow the use of IPv6 on LLNs. Although there already exist several studies on the the performance of RPL and embedded IPv6 stack in LLN, performance measurement and characterization of TCP over RPL in multihop LLNs is yet to be studied. In this article, we present a comprehensive experimental study on the performance of TCP over RPL in an embedded IPv6-based LLN running over a 30-node multihop IEEE 802.15.4 testbed network. Our results and findings are aimed at investigating how embedded TCP interoperates with common Linux TCP and underlying RPL (and vice versa), which furthers our understanding of the performance trade-offs when choosing TCP over RPL in IPv6-based LLNs.

A Data Aggregation Scheme based on Designated Path for Efficient Energy Management of Sensor Nodes in Geosensor Networks (지오센서 네트워크에서 센서 노드의 효율적인 에너지 관리를 위한 지정 경로 기반 데이터 집계 처리 기법)

  • Yoon, Min;Kim, Yong-Ki;Bista, Rabindra;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.10-17
    • /
    • 2010
  • Sensor nodes used in Geosensor network are resource limited and power constrained. So it is necessary to research on routing protocols to gather data by using energy efficiently. Wireless sensor networks collect data gathered from sensor nodes by transfering it to the sink using multihop. However, it has two problems. First, the existing works require unnecessary data transmission for choosing a proper parent node to transfer data. Secondly, they have a large number of data transmission because each sensor node has a different path. To solves the problems, we, in this paper, propose a designated path based data aggregation scheme for efficient energy management in WSNs. The proposed scheme can reduce unnecessary data transmission by pre-determining a set of paths and can enable all the sensor nodes to participate in gathering data by running them in round-robin fashion. We show from performance analysis that the proposed scheme is more energy efficient than the existing directed diffusion(DD) and the hierarchical data aggregation(HDA).

A Novel Multihop Range-Free Localization Algorithm Based on Reliable Anchor Selection in Wireless Sensor Networks

  • Woo, Hyunjae;Lee, Chaewoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.574-592
    • /
    • 2016
  • Range-free localization algorithm computes a normal node's position by estimating the distance to anchors which know their actual position. In recent years, reliable anchor selection research has been gained a lot of attention because this approach improves localization accuracy by selecting the only subset of anchors called reliable anchor. The distance estimation accuracy and the geometric shape formed by anchors are the two important factors which need to be considered when selecting the reliable anchors. In this paper, we study the relationship between a relative position of three anchors and localization error. From this study, under ideal condition, which is with zero localization error, we find two conditions for anchor selection, thereby proposing a novel anchor selection algorithm that selects three anchors matched most closely to the two conditions, and the validities of the conditions are proved using two theorems. By further employing the conditions, we finally propose a novel range-free localization algorithm. Simulation results show that the proposed algorithm shows considerably improved performance as compared to other existing works.

A Survey on Communication Protocols for Wireless Sensor Networks

  • Jang, Ingook;Pyeon, Dohoo;Kim, Sunwoo;Yoon, Hyunsoo
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.4
    • /
    • pp.231-241
    • /
    • 2013
  • Improvements in wireless sensor network (WSN) technology have resulted in a large number of applications. WSNs have been mainly used for monitoring applications, but they are also applicable to target tracking, health care, and monitoring with multimedia data. Nodes are generally deployed in environments where the exhausted batteries of sensor nodes are difficult to charge or replace. The primary goal of communication protocols in WSNs is to maximize energy efficiency in order to prolong network lifetime. In this paper, various medium access control (MAC) protocols for synchronous/asynchronous and single/multi-channel WSNs are investigated. Single-channel MAC protocols are categorized into synchronous and asynchronous approaches, and the advantages and disadvantages of each protocol are presented. The different features required in multi-channel WSNs compared to single-channel WSNs are also investigated, and surveys on multi-channel MAC protocols proposed for WSNs are provided. Then, existing broadcast schemes in such MAC protocols and efficient multi-hop broadcast protocols proposed for WSNs are provided. The limitations and challenges in many communication protocols according to this survey are pointed out, which will help future researches on the design of communication protocols for WSNs.