• Title/Summary/Keyword: Multigroup Cross Section

Search Result 17, Processing Time 0.026 seconds

An assessment of the applicability of multigroup cross sections generated with Monte Carlo method for fast reactor analysis

  • Lin, Ching-Sheng;Yang, Won Sik
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2733-2742
    • /
    • 2020
  • This paper presents an assessment of applicability of the multigroup cross sections generated with Monte Carlo tools to the fast reactor analysis based on transport calculations. 33-group cross section sets were generated for simple one- (1-D) and two-dimensional (2-D) sodium-cooled fast reactor problems using the SERPENT code and applied to deterministic steady-state and depletion calculations. Relative to the reference continuous-energy SERPENT results, with the transport corrected P0 scattering cross section, the k-eff value was overestimated by 506 and 588 pcm for 1-D and 2-D problems, respectively, since anisotropic scattering is important in fast reactors. When the scattering order was increased to P5, the 1-D and 2-D problem errors were increased to 577 and 643 pcm, respectively. A sensitivity and uncertainty analysis with the PERSENT code indicated that these large k-eff errors cannot be attributed to the statistical uncertainties of cross sections and they are likely due to the approximate anisotropic scattering matrices determined by scalar flux weighting. The anisotropic scattering cross sections were alternatively generated using the MC2-3 code and merged with the SERPENT cross sections. The mixed cross section set consistently reduced the errors in k-eff, assembly powers, and nuclide densities. For example, in the 2-D calculation with P3 scattering order, the k-eff error was reduced from 634 pcm to -223 pcm. The maximum error in assembly power was reduced from 2.8% to 0.8% and the RMS error was reduced from 1.4% to 0.4%. The maximum error in the nuclide densities at the end of 12-month depletion that occurred in 237Np was reduced from 3.4% to 1.5%. The errors of the other nuclides are also reduced consistently, for example, from 1.1% to 0.1% for 235U, from 2.2% to 0.7% for 238Pu, and from 1.6% to 0.2% for 241Pu. These results indicate that the scalar flux weighted anisotropic scattering cross sections of SERPENT may not be adequate for application to fast reactors where anisotropic scattering is important.

Development of a fast reactor multigroup cross section generation code EXUS-F capable of direct processing of evaluated nuclear data files

  • Lim, Changhyun;Joo, Han Gyu;Yang, Won Sik
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.340-355
    • /
    • 2018
  • The methods and performance of a fast reactor multigroup cross section (XS) generation code EXUS-F are described that is capable of directly processing Evaluated Nuclear Data File format nuclear data files. RECONR of NJOY is used to generate pointwise XS data, and Doppler broadening is incorporated by the Gauss-Hermite quadrature method. The self-shielding effect is incorporated in the ultrafine group XSs in the resolved and unresolved resonance ranges. Functions to generate scattering transfer matrices and fission spectrum matrices are realized. The extended transport approximation is used in zero-dimensional calculations, whereas the collision probability method and the method of characteristics are used for one-dimensional cylindrical geometry and two-dimensional hexagonal geometry problems, respectively. Verification calculations are performed first for various homogeneous mixtures and cylindrical problems. It is confirmed that the spectrum calculations and the corresponding multigroup XS generations are performed adequately in that the reactivity errors are less than 50 pcm with the McCARD Monte Carlo solutions. The nTRACER core calculations are performed with the EXUS-F-generated 47 group XSs for the two-dimensional Advanced Burner Reactor 1000 benchmark problem. The reactivity error of 160 pcm and the root mean square error of the pin powers of 0.7% indicate that EXUF-F generates properly the broad-group XSs.

Use of Monte Carlo code MCS for multigroup cross section generation for fast reactor analysis

  • Nguyen, Tung Dong Cao;Lee, Hyunsuk;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2788-2802
    • /
    • 2021
  • Multigroup cross section (MG XS) generation by the UNIST in-house Monte Carlo (MC) code MCS for fast reactor analysis using nodal diffusion codes is reported. The feasibility of the approach is quantified for two sodium fast reactors (SFRs) specified in the OECD/NEA SFR benchmark: a 1000 MWth metal-fueled SFR (MET-1000) and a 3600 MWth oxide-fueled SFR (MOX-3600). The accuracy of a few-group XSs generated by MCS is verified using another MC code, Serpent 2. The neutronic steady-state whole-core problem is analyzed using MCS/RAST-K with a 24-group XS set. Various core parameters of interest (core keff, power profiles, and reactivity feedback coefficients) are obtained using both MCS/RAST-K and MCS. A code-to-code comparison indicates excellent agreement between the nodal diffusion solution and stochastic solution; the error in the core keff is less than 110 pcm, the root-mean-square error of the power profiles is within 1.0%, and the error of the reactivity feedback coefficients is within three standard deviations. Furthermore, using the super-homogenization-corrected XSs improves the prediction accuracy of the control rod worth and power profiles with all rods in. Therefore, the results demonstrate that employing the MCS MG XSs for the nodal diffusion code is feasible for high-fidelity analyses of fast reactors.

SIMMER extension for multigroup energy structure search using genetic algorithm with different fitness functions

  • Massone, Mattia;Gabrielli, Fabrizio;Rineiski, Andrei
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1250-1258
    • /
    • 2017
  • The multigroup transport theory is the basis for many neutronics modules. A significant point of the cross-section (XS) generation procedure is the choice of the energy groups' boundaries in the XS libraries, which must be carefully selected as an unsuitable energy meshing can easily lead to inaccurate results. This decision can require considerable effort and is particularly difficult for the common user, especially if not well-versed in reactor physics. This work investigates a genetic algorithm-based tool which selects an appropriate XS energy structure (ES) specific for the considered problem, to be used for the condensation of a fine multigroup library. The procedure is accelerated by results storage and fitness calculation speedup and can be easily parallelized. The extension is applied to the coupled code SIMMER and tested on the European Sustainable Nuclear Industrial Initiative (ESNII+) Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID)-like reactor system with different fitness functions. The results show that, when the libraries are condensed based on the ESs suggested by the algorithm, the code actually returns the correct multiplication factor, in both reference and voided conditions. The computational effort reduction obtained by using the condensed library rather than the fine one is assessed and is much higher than the time required for the ES search.

NEUTRONICS MODELING AND SIMULATION OF SHARP FOR FAST REACTOR ANALYSIS

  • Yang, W.S.;Smith, M.A.;Lee, C.H.;Wollaber, A.;Kaushik, D.;Mohamed, A.S.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.520-545
    • /
    • 2010
  • This paper presents the neutronics modeling capabilities of the fast reactor simulation system SHARP, which ANL is developing as part of the U.S. DOE's NEAMS program. We discuss the three transport solvers (PN2ND, SN2ND, and MOCFE) implemented in the UNIC code along with the multigroup cross section generation code $MC^2$-3. We describe the solution methods and modeling capabilities, and discuss the improvement needs for each solver, focusing on massively parallel computation. We present the performance test results against various benchmark problems and ZPR-6 and ZPPR critical experiments. We also discuss weak and strong scalability results for the SN2ND solver on the ZPR-6 critical assembly benchmarks.

Practical resolution of angle dependency of multigroup resonance cross sections using parametrized spectral superhomogenization factors

  • Park, Hansol;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1287-1300
    • /
    • 2017
  • Based on the observation that ignoring the angle dependency of multigroup resonance cross sections within a fuel pellet would result in nontrivial underestimation of the spatial self-shielding of flux, a parametrized spectral superhomogenization (SPH) factor library (PSSL) method is developed as a practical means of resolving the problem. Region-wise spectral SPH factors are calculated by the normal and transport corrected SPH iterations after ultrafine group slowing down calculations over various light water reactor pin-cell configurations. The parametrization is done with fuel temperature, U-238 number density, fuel radius, moderator source represented by ${\Sigma}_{mod}V_{mod}$, and the number density ratio of resonance nuclides to that of U-238 in a form of resonance interference correction factors. The parametrization is successful in that the root mean square errors of the interpolated SPH factors over the fuel regions of various pin-cells are within 0.1%. The improvement in reactivity error of the PSSL method is shown to be superior to that by the original SPH method in that the reactivity bias of -200 pcm to -300 pcm vanishes almost completely. It is demonstrated that the environment effect takes only about 4% in the reactivity improvement so that the pin-cell based PSSL method is effective in the assembly problems.

Establishment of DeCART/MIG stochastic sampling code system and Application to UAM and BEAVRS benchmarks

  • Ho Jin Park;Jin Young Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1563-1570
    • /
    • 2023
  • In this study, a DeCART/MIG uncertainty quantification (UQ) analysis code system with a multicorrelated cross section stochastic sampling (S.S.) module was established and verified through the UAM (Uncertainty Analysis in Modeling) and the BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations) benchmark calculations. For the S.S. calculations, a sample of 500 DeCART multigroup cross section sets for two major actinides, i.e., 235U and 238U, were generated by the MIG code and covariance data from the ENDF/B-VII.1 evaluated nuclear data library. In the three pin problems (i.e. TMI-1, PB2, and Koz-6) from the UAM benchmark, the uncertainties in kinf by the DeCART/MIG S.S. calculations agreed very well with the sensitivity and uncertainty (S/U) perturbation results by DeCART/MUSAD and the S/U direct subtraction (S/U-DS) results by the DeCART/MIG. From these results, it was concluded that the multi-group cross section sampling module of the MIG code works correctly and accurately. In the BEAVRS whole benchmark problems, the uncertainties in the control rod bank worth, isothermal temperature coefficient, power distribution, and critical boron concentration due to cross section uncertainties were calculated by the DeCART/MIG code system. Overall, the uncertainties in these design parameters were less than the general design review criteria of a typical pressurized water reactor start-up case. This newly-developed DeCART/MIG UQ analysis code system by the S.S. method can be widely utilized as uncertainty analysis and margin estimation tools for developing and designing new advanced nuclear reactors.

Generation and Benchmarking of a 69-group Cross Section Library for Thermal Reactor Applications (열중성자로 핵계산을 위한 69군 단면적 라이브러리 생산 및 검증)

  • Kim, Jung-Do;Lee, Jong-Tai;Gil, Choong-Sup;Kim, Hark-Rho
    • Nuclear Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.245-258
    • /
    • 1989
  • A 69-group cross section library consisting of more than 130 materials was generated for thermal reactor applications using the NJOY nuclear data processing system and the recent version of evaluated nuclear data files available from IAEA Nuclear Data Section. The multigroup library was validated through the analysis of various criticality experiments and depletion results of PWR. When used with the WIMS-KAERI code, the average $K_{eff}$ obtained for 47 uranium-oxide and 41 uranium metal fueled critical configurations is 0.9997 with a standard deviation of 0.69 percent. The calculated burnup dependent isotopic inventories of uranium and plutonium generally show good agreement with measured values obtained from depleted PWR pins.s.

  • PDF

Development of a One-Group Cross Section Data Base of the ORIGEN2 Computer Code for Research Reactor Applications (ORIGEN2 전산코드를 위한 연구로용 1군 단면적 데이타베이스 개발)

  • Kim, Jung-Do;Gil, Choong-Sub;Lee, Jong-Tai;Hwang, Won-Guk
    • Nuclear Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 1992
  • A one-group cross section data base of the ORIGEN2 computer code was developed for research reactor applications. For this, ENDF/B-IV and -V data were processed using the NJOY code system into 69-group data. The burnup-dependent weighting spectra for KMRR were calculated with the WIMS-KAERI computer code, and then the 69-group data were collapsed to one-group using the spectra. The ORIGEN2-predicted burnup-dependent acti-nide compositions of KMRR spent fuel using the newly developed data base show a good agreement with the results of detailed multigroup transport calculation. In addition, the burnup characteristics of KMRR spent fuel was analyzed with the new data base.

  • PDF

The multigroup library processing method for coupled neutron and photon heating calculation of fast reactor

  • Teng Zhang;Xubo Ma;Kui Hu;GuanQun Jia
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1204-1212
    • /
    • 2024
  • To accurately calculate the heating distribution of the fast reactor, a neutron-photon library in MATXS format named Knight-B7.1-1968n × 94γ was processed based on the ENDF/B-VII.1 library for ultrafine groups. The neutron cross-section processing code MGGC2.0 was used to generate few-group neutron cross sections in ISOTXS format. Additionally, the self-developed photon cross-section processing code NGAMMA was utilized to generate photon libraries for neutron-photon coupled heating calculations, including photo-atom cross sections for the ISOTXS format, prompt photon production cross sections, and kinetic energy release in materials (KERMA) factors for neutrons and photons, and the self-shielding effect from the capture and fission cross sections of neutron to photon have been taken into account when the photon source generated by neutron is calculated. The interface code GSORCAL was developed to generate the photon source distribution and interface with the DIF3D code to calculate the neutron-photon coupling heating distribution of the fast reactor core. The neutron-photon coupled heating calculation route was verified using the ZPPR-9 benchmark and the RBEC-M benchmark, and the results of the coupled heating calculations were analyzed in comparison with those obtained from the Monte Carlo code MCNP. The calculations show that the library was accurately processed, and the results of the fast reactor neutron-photon coupled heating calculations agree well with those obtained from MCNP.