DOI QR코드

DOI QR Code

NEUTRONICS MODELING AND SIMULATION OF SHARP FOR FAST REACTOR ANALYSIS

  • Yang, W.S. (Argonne National Laboratory) ;
  • Smith, M.A. (Argonne National Laboratory) ;
  • Lee, C.H. (Argonne National Laboratory) ;
  • Wollaber, A. (Argonne National Laboratory) ;
  • Kaushik, D. (Argonne National Laboratory) ;
  • Mohamed, A.S. (Argonne National Laboratory)
  • Received : 2010.08.02
  • Published : 2010.10.31

Abstract

This paper presents the neutronics modeling capabilities of the fast reactor simulation system SHARP, which ANL is developing as part of the U.S. DOE's NEAMS program. We discuss the three transport solvers (PN2ND, SN2ND, and MOCFE) implemented in the UNIC code along with the multigroup cross section generation code $MC^2$-3. We describe the solution methods and modeling capabilities, and discuss the improvement needs for each solver, focusing on massively parallel computation. We present the performance test results against various benchmark problems and ZPR-6 and ZPPR critical experiments. We also discuss weak and strong scalability results for the SN2ND solver on the ZPR-6 critical assembly benchmarks.

Keywords

References

  1. W. S. Yang and T. A. Taiwo, “Status of Reactor Analysis Methods and Codes in the U.S.A,” Proc. of PHYSOR 2004: The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments, Chicago, Illinois, April 25-29, 2004.
  2. T. Takeda, “Neutronics Codes Currently Used in Japan for Fast and Thermal Reactor Applications,” Proc. of PHYSOR 2004: The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments, Chicago, Illinois, April 25-29, 2004.
  3. Kord Smith, “Needs Related to the Nuclear Power Industry,” Proc. of PHYSOR 2004: The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments, Chicago, Illinois, April 25-29, 2004.
  4. H. H. Hummel and D. Okrent, Reactivity Coefficients in Large Fast Reactors, American Nuclear Society (1970).
  5. D. C. Wade and E. K. Fujita, “Trends versus Reactor Size of Passive Reactivity Shutdown and Control Performance,” Nucl. Sci. Eng., 103, 182 (1989). https://doi.org/10.13182/NSE89-6
  6. P. Fischer, D. Kaushik, D. Nowak, A. Siegel, W. S. Yang, and G. W. Pieper, “Advanced Simulation for Fast Reactor Analysis,” SciDAC Review, Fall 2008 (2008).
  7. G. Palmiotti, M. A. Smith, C. Rabiti, D. Kaushik, A. Siegel, B. Smith, and E. E. Lewis, “UNÌC: Ultimate Neutronic Investigation Code,” Proc. of Joint Int. Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, California, April 15-19, 2007.
  8. M. A. Smith, D. Kaushik, A. Wollaber, W. S. Yang, B. Smith, C. Rabiti, G. Palmiotti, “Recent Research Progress on UNIC at Argonne National Laboratory,” Proc. of Int. Conf. on Mathematics, Computational Methods & Reactor Physics, Saratoga Springs, New York, May 3-7, 2009.
  9. M. A. Smith, D. Kaushik, A. Wollaber, W. S. Yang, and B. Smith, “New Neutronics Analysis Tool Development at Argonne National Laboratory,” Proc. of Int. Conf. on Fast Reactors and Related Fuel Cycles (FR09), Kyoto, Japan, December 7-11, 2009.
  10. T. D. Blacker et al., “CUBIT Mesh Generation Environment, Volume 1: Users Manual,” SAND94-1100, Sandia National Laboratory (1994).
  11. B. J. Whitlock, “VisIt User’s Manual,” UCRL-SM-220449, Lawrence Livermore National Laboratory (2005).
  12. C. B. Carrico, E. E. Lewis and G. Palmiotti, “Three Dimensional Variational Nodal Transport Methods for Cartesian, Triangular and Hexagonal Criticality Calculations,” Nucl. Sci. Eng. 111, 168 (1992). https://doi.org/10.13182/NSE92-1
  13. G. Palmiotti, E. E. Lewis and C. B. Carrico, “VARIANT: VARIational Anisotropic Nodal Transport for Multidimensional Cartesian and Hexagonal Geometry Calculation,” Argonne National Laboratory, ANL-95/40 (1995).
  14. C. H. Lee and W. S. Yang, “Development of Multi-group Cross Section Generation Code MC2-3 for Fast Reactor Analysis,” Proc. of Int. Conf. on Fast Reactors and Related Fuel Cycles (FR09), Kyoto, Japan, December 7-11, 2009.
  15. H. Henryson II, B. J. Toppel, and C. G. Stenberg, “MC2-2: A Code to Calculate Fast Neutron Spectra and Multi-group Cross Sections,” ANL-8144, Argonne National Laboratory (1976).
  16. B. J. Toppel, H. Henryson II, and C. G. Stenberg, “ETOE-2/$MC^2$-2/SDX Multi-group Cross-Section Processing,” Conf-780334-5, Proc. of RSIC Seminar-Workshop on Multi-group Cross Sections, Oak Ridge, TN, March 1978.
  17. E. E. Lewis and W. F. Miller Jr., Computational Methods of Neutron Transport. Wiley, New York (1984).
  18. B. G. Carlson, “Tables of Equal Weight Quadrature EQn Over the Unit Sphere,” LA-4734, Los Alamos Scientific Laboratory (1971).
  19. B. G. Carlson, “Transport Theory: Discrete Ordinates Quadrature Over the Unit Sphere,” LA-4554, Los Alamos Scientific Laboratory (1971).
  20. C. P. Thurgood, A. Pollard, and H. A. Becker, “The TN Quadrature Set for the Discrete Ordinates Method,” Transactions of the ASME, 117, 1068 (1995). https://doi.org/10.1115/1.2836285
  21. V. I. Lebedev, and D. N. Laikov, “A Quadrature Formula for the Sphere of the 131st Algebraic Order of Accuracy,” Doklady Mathematics, 59, 477 (1999).
  22. F. K. Chan and E. M. O’Neill, “Feasibility Study of a Quadrilateralized Spherical Cube Earth Data Base,” EPRF Technical Report 2-75, Computer Sciences Corporation (1975).
  23. M. Tegmark, “An Icosahedron-Based Method for Pixelizing the Celestial Sphere,” The Astronomical Journal, 470, L81 (1996). https://doi.org/10.1086/310310
  24. J. N. Reddy, An Introduction to the Finite Element Method, Second Edition, McGraw-Hill, Boston (1993).
  25. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 4th ed., McGraw-Hill, New York (1989).
  26. Y. Sadd, Iterative Methods for Sparse Linear Systems, Second Edition, Society of Industrial and Applied Mathematics (2003).
  27. R. E. Alcouffe, F. W. Brinkley, D. R. Marr, and R. D. O’Dell, “User’s Guide for TWODANT: A Code Package for Two-Dimensional, Diffusion-Accelerated, Neutral-Particle Transport,” LA-10049-M, Los Alamos National Laboratory, 1990.
  28. S. Balay, K. R. Buschelman, W. D. Gropp, D. K. Kaushik, M. G. Knepley, L. C. McInnes, and B. F. Smith, “PETSc home page,” http://www.mcs.anl.gov/petsc.
  29. E. E. Lewis, A. Wollaber, A. Marin-Lafleche, M. A. Smith, and W. S. Yang, “Comparison of Krylov and p-Multigrid Solutions of Orthogonal Response Matrix Equations,” Trans. Am. Nucl. Soc., 101, 538 (2010).
  30. E. E. Lewis, A. Wollaber, A. Marin-Lafleche, M. A. Smith, and W. S. Yang, “Response Matrix Acceleration Methods Based on Orthogonalization and Domain Decomposition,” Trans. Am. Nucl. Soc., 101, 540 (2010).
  31. METIS - Family of Multilevel Partitioning Algorithms, Karypis Lab, http://glaros.dtc.umn.edu/gkhome/views/metis/.
  32. J. R. Askew, “A Characteristics Formulation of the Neutron Transport Equation in Complicated Geometries,” AAEWM 1108, United Kingdom Atomic Energy Establishment (1972).
  33. B. G. Carlson, “A Method of Characteristic and Other Improvements in Solution Methods for the Transport Equation,” Nucl. Sci. Eng., 61, 408 (1976). https://doi.org/10.13182/NSE76-A26927
  34. C. Rabiti, M. A. Smith, W. S. Yang, D. Kaushik, and G. Palmiotti, “Parallel Method of Characteristics in Unstructured Finite Element Meshes for the UNIC Code,” Proc. of PHYSOR 2008, Interlaken, Switzerland, September 14-19, 2008.
  35. C. Rabiti, G. Palmiotti, W. S. Yang M. A. Smith, and D. Kaushik, “Quasi Linear Representation of the Isotropic Scattering Source for the Method of Characteristics,” Proc. of Int. Conf. on Mathematics, Computational Methods & Reactor Physics, Saratoga Springs, New York, May 3-7, 2009.
  36. T. Moller and B. Trumbore, “Fast, Minimum Storage Ray-Triangle Intersection,” Journal of Graphics tools, 2, 21 (1997). https://doi.org/10.1080/10867651.1997.10487468
  37. Argonne Leadership Computing Facility, Argonne National Laboratory, http://www.alcf.anl.gov.
  38. I. I. Bondarenko, et al, Group Constants for Nuclear Reactor Calculations, Consultants Bureau Enterprises, Inc., New York (1964).
  39. M. Segev, “A Theory of Resonance-Group Self-Shielding,” Nucl. Sci. and Eng., 56, 72 (1975). https://doi.org/10.13182/NSE75-A26621
  40. R. E. MacFarlane and D. W. Muir, “The NJOY Nuclear Data Processing System Version 91,” LA-12740-M, Los Alamos National Laboratory (1994).
  41. L. B. Levitt, “The Probability Table Method for Treating Unresolved Resonances in Monte Carlo Criticality Calculations,” Trans. Am. Nucl. Soc. 14, 648 (1971).
  42. M. N. Nikolaev, et al., “Method of Subgroups for Accounting of Resonance Structure of Cross-sections in Neutron Calculations,” Atomn. Energ. 29, 11 (1970).
  43. D. E. Cullen, “Application of the Probability Table Method to Multi-group Calculations of Neutron Transport,” Nucl. Sci. Eng. 55, 387 (1974). https://doi.org/10.13182/NSE74-3
  44. P. Ribon and J. M. Maillard, “Les Tables De Probabilite Applications Au Traitement Des Sections Efficaces Pour La Neutronique,” Report CEA-N, NEACRP-L-294 (1986).
  45. M. J. Grimstone, J. D. Tullet, and G. Rimpault., “Accurate Treatment of Fast Reactor Fuel Assembly Heterogeneity with the ECCO Cell Code,” International Conference on the Physics of Reactors: Operation Design and Computation, PHYSOR 90, April 23-27 (1990).
  46. R. N. Hwang, “A Rigorous Pole Representation of Multilevel Cross Sections and Its Practical Applications,” Nucl. Sci. Eng., 96, 192 (1987). https://doi.org/10.13182/NSE87-A16381
  47. R. N. Hwang, “Efficient Methods for the Treatment of Resonance Integrals,” Nucl. Sci. Eng., 52, 157 (1973). https://doi.org/10.13182/NSE73-A28186
  48. W. M. Stacey Jr., “Continuous Slowing Down Theory Applied to Fast-Reactor Assemblies,” Nucl. Sci. Eng., 41, 381 (1970). https://doi.org/10.13182/NSE70-A19096
  49. C. H. Lee, W. S. Yang, and R. N. Hill, “Initial Verification and Validation of ENDF/B-VII.0 Libraries of MC2-2 against Fast Critical Systems,” Trans. Am. Nucl. Soc., 97, 842 (2007).
  50. S. J. Kim, W. S. Yang, and C. H. Lee, “Analysis of ZPPR-15 Critical Experiments with ENDF/B-V.2 and ENDF/BVII.0 Data,” Proc. of PHYSOR 2008, Interlaken, Switzerland, September 14-19, 2008.
  51. International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, Organization for Economic Co-operation and Development - Nuclear Energy Agency (OECD-NEA), September 2009.
  52. International Handbook of Evaluated Reactor Physics Benchmark Experiments, NEA/NSC/DOC (2006)1, Organization for Economic Co-operation and Development - Nuclear Energy Agency (OECD-NEA), March 2009.
  53. H. F. McFarlane, et al., “Benchmark Physics Tests in the Metallic-Fueled Assembly ZPPR-15,” Nucl. Sci. Eng. 101, 137 (1989). https://doi.org/10.13182/NSE101-137
  54. W. S. Yang and S. J. Kim, Private Communications, Argonne National Laboratory and Korea Atomic Energy Research Institute, September 30, 2009.
  55. M. B. Chadwick et al., “ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology,” Nucl. Data Sheets, 107, 2931 (2006). https://doi.org/10.1016/j.nds.2006.11.001
  56. F. B. Brown, et al. “MCNP5-1.51 Release Notes,” LA-UR-09-00384, Los Alamos National Laboratory (2009).
  57. R. N. Blomquist, “VIM Continuous Energy Monte Carlo Transport Code,” Proc. Intl. Conf. on Mathematics, Computations, Reactor Physics and Environmental Analysis, Portland, OR, April 30-May 4, 1995.
  58. T. Takeda and H. Ikeda, “3-D Neutron Transport Benchmarks,” NEACRP-1-300, Organization of Economic Cooperation and Development - Nuclear Energy Agency (March 1991).
  59. Y. I. Chang, et al., “Advanced Burner Test Reactor Preconceptual Design Report,” ANL-ABR-1 (ANL-AFCI-173), Argonne National Laboratory, 2006.
  60. W. S. Yang, T. K. Kim, R. N. Hill, “Core Design Studies for Advanced Burner Test Reactor,” Proc. of ICAPP 2007, Nice Acropolis, France, May 13-18, 2007.
  61. M. A. Smith, N. Tsoulfanidis, E. E. Lewis, G. Palmiotti and T. A. Taiwo, “Higher Order Angular Capabilities of the VARIANT Code,” Trans. Am. Nucl. Soc., 86, 321 (2002).
  62. R. D. Lawrence, “Progress in Nodal Methods for the Solution of the Neutron Diffusion and Transport Equations,” Prog. Nucl. Energy, 17, 271 (1986). https://doi.org/10.1016/0149-1970(86)90034-X
  63. D. Kaushik, M. A. Smith, A. Wollaber, B. Smith, A. Siegel, W. S. Yang, “Enabling High-Fidelity Neutron Transport Simulations on Petascale Architectures,” Proc. of Int. Conf. for High Performance Computing, Networking, Storage and Analysis, Portland, Or, November 14-20, 2009 (Gordon Bell Award Finalist Paper).
  64. Julich Supercomputing Center, Julich Forschungszentrum, http://www.fz-juelich.de/jsc/jugene.
  65. National Center for Computational Sciences, Oak Ridge National Laboratory, http://www.nccs.gov.

Cited by

  1. Design of Ultralong-Cycle Fast Reactor Employing Breed-and-Burn Strategy vol.183, pp.3, 2013, https://doi.org/10.13182/NT13-A19430
  2. A hybrid method to generate few-group cross sections for fast reactor analysis vol.55, pp.8, 2018, https://doi.org/10.1080/00223131.2018.1452650