References
- W. S. Yang and T. A. Taiwo, “Status of Reactor Analysis Methods and Codes in the U.S.A,” Proc. of PHYSOR 2004: The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments, Chicago, Illinois, April 25-29, 2004.
- T. Takeda, “Neutronics Codes Currently Used in Japan for Fast and Thermal Reactor Applications,” Proc. of PHYSOR 2004: The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments, Chicago, Illinois, April 25-29, 2004.
- Kord Smith, “Needs Related to the Nuclear Power Industry,” Proc. of PHYSOR 2004: The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments, Chicago, Illinois, April 25-29, 2004.
- H. H. Hummel and D. Okrent, Reactivity Coefficients in Large Fast Reactors, American Nuclear Society (1970).
- D. C. Wade and E. K. Fujita, “Trends versus Reactor Size of Passive Reactivity Shutdown and Control Performance,” Nucl. Sci. Eng., 103, 182 (1989). https://doi.org/10.13182/NSE89-6
- P. Fischer, D. Kaushik, D. Nowak, A. Siegel, W. S. Yang, and G. W. Pieper, “Advanced Simulation for Fast Reactor Analysis,” SciDAC Review, Fall 2008 (2008).
- G. Palmiotti, M. A. Smith, C. Rabiti, D. Kaushik, A. Siegel, B. Smith, and E. E. Lewis, “UNÌC: Ultimate Neutronic Investigation Code,” Proc. of Joint Int. Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications (M&C + SNA 2007), Monterey, California, April 15-19, 2007.
- M. A. Smith, D. Kaushik, A. Wollaber, W. S. Yang, B. Smith, C. Rabiti, G. Palmiotti, “Recent Research Progress on UNIC at Argonne National Laboratory,” Proc. of Int. Conf. on Mathematics, Computational Methods & Reactor Physics, Saratoga Springs, New York, May 3-7, 2009.
- M. A. Smith, D. Kaushik, A. Wollaber, W. S. Yang, and B. Smith, “New Neutronics Analysis Tool Development at Argonne National Laboratory,” Proc. of Int. Conf. on Fast Reactors and Related Fuel Cycles (FR09), Kyoto, Japan, December 7-11, 2009.
- T. D. Blacker et al., “CUBIT Mesh Generation Environment, Volume 1: Users Manual,” SAND94-1100, Sandia National Laboratory (1994).
- B. J. Whitlock, “VisIt User’s Manual,” UCRL-SM-220449, Lawrence Livermore National Laboratory (2005).
- C. B. Carrico, E. E. Lewis and G. Palmiotti, “Three Dimensional Variational Nodal Transport Methods for Cartesian, Triangular and Hexagonal Criticality Calculations,” Nucl. Sci. Eng. 111, 168 (1992). https://doi.org/10.13182/NSE92-1
- G. Palmiotti, E. E. Lewis and C. B. Carrico, “VARIANT: VARIational Anisotropic Nodal Transport for Multidimensional Cartesian and Hexagonal Geometry Calculation,” Argonne National Laboratory, ANL-95/40 (1995).
- C. H. Lee and W. S. Yang, “Development of Multi-group Cross Section Generation Code MC2-3 for Fast Reactor Analysis,” Proc. of Int. Conf. on Fast Reactors and Related Fuel Cycles (FR09), Kyoto, Japan, December 7-11, 2009.
- H. Henryson II, B. J. Toppel, and C. G. Stenberg, “MC2-2: A Code to Calculate Fast Neutron Spectra and Multi-group Cross Sections,” ANL-8144, Argonne National Laboratory (1976).
-
B. J. Toppel, H. Henryson II, and C. G. Stenberg, “ETOE-2/
$MC^2$ -2/SDX Multi-group Cross-Section Processing,” Conf-780334-5, Proc. of RSIC Seminar-Workshop on Multi-group Cross Sections, Oak Ridge, TN, March 1978. - E. E. Lewis and W. F. Miller Jr., Computational Methods of Neutron Transport. Wiley, New York (1984).
- B. G. Carlson, “Tables of Equal Weight Quadrature EQn Over the Unit Sphere,” LA-4734, Los Alamos Scientific Laboratory (1971).
- B. G. Carlson, “Transport Theory: Discrete Ordinates Quadrature Over the Unit Sphere,” LA-4554, Los Alamos Scientific Laboratory (1971).
- C. P. Thurgood, A. Pollard, and H. A. Becker, “The TN Quadrature Set for the Discrete Ordinates Method,” Transactions of the ASME, 117, 1068 (1995). https://doi.org/10.1115/1.2836285
- V. I. Lebedev, and D. N. Laikov, “A Quadrature Formula for the Sphere of the 131st Algebraic Order of Accuracy,” Doklady Mathematics, 59, 477 (1999).
- F. K. Chan and E. M. O’Neill, “Feasibility Study of a Quadrilateralized Spherical Cube Earth Data Base,” EPRF Technical Report 2-75, Computer Sciences Corporation (1975).
- M. Tegmark, “An Icosahedron-Based Method for Pixelizing the Celestial Sphere,” The Astronomical Journal, 470, L81 (1996). https://doi.org/10.1086/310310
- J. N. Reddy, An Introduction to the Finite Element Method, Second Edition, McGraw-Hill, Boston (1993).
- O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 4th ed., McGraw-Hill, New York (1989).
- Y. Sadd, Iterative Methods for Sparse Linear Systems, Second Edition, Society of Industrial and Applied Mathematics (2003).
- R. E. Alcouffe, F. W. Brinkley, D. R. Marr, and R. D. O’Dell, “User’s Guide for TWODANT: A Code Package for Two-Dimensional, Diffusion-Accelerated, Neutral-Particle Transport,” LA-10049-M, Los Alamos National Laboratory, 1990.
- S. Balay, K. R. Buschelman, W. D. Gropp, D. K. Kaushik, M. G. Knepley, L. C. McInnes, and B. F. Smith, “PETSc home page,” http://www.mcs.anl.gov/petsc.
- E. E. Lewis, A. Wollaber, A. Marin-Lafleche, M. A. Smith, and W. S. Yang, “Comparison of Krylov and p-Multigrid Solutions of Orthogonal Response Matrix Equations,” Trans. Am. Nucl. Soc., 101, 538 (2010).
- E. E. Lewis, A. Wollaber, A. Marin-Lafleche, M. A. Smith, and W. S. Yang, “Response Matrix Acceleration Methods Based on Orthogonalization and Domain Decomposition,” Trans. Am. Nucl. Soc., 101, 540 (2010).
- METIS - Family of Multilevel Partitioning Algorithms, Karypis Lab, http://glaros.dtc.umn.edu/gkhome/views/metis/.
- J. R. Askew, “A Characteristics Formulation of the Neutron Transport Equation in Complicated Geometries,” AAEWM 1108, United Kingdom Atomic Energy Establishment (1972).
- B. G. Carlson, “A Method of Characteristic and Other Improvements in Solution Methods for the Transport Equation,” Nucl. Sci. Eng., 61, 408 (1976). https://doi.org/10.13182/NSE76-A26927
- C. Rabiti, M. A. Smith, W. S. Yang, D. Kaushik, and G. Palmiotti, “Parallel Method of Characteristics in Unstructured Finite Element Meshes for the UNIC Code,” Proc. of PHYSOR 2008, Interlaken, Switzerland, September 14-19, 2008.
- C. Rabiti, G. Palmiotti, W. S. Yang M. A. Smith, and D. Kaushik, “Quasi Linear Representation of the Isotropic Scattering Source for the Method of Characteristics,” Proc. of Int. Conf. on Mathematics, Computational Methods & Reactor Physics, Saratoga Springs, New York, May 3-7, 2009.
- T. Moller and B. Trumbore, “Fast, Minimum Storage Ray-Triangle Intersection,” Journal of Graphics tools, 2, 21 (1997). https://doi.org/10.1080/10867651.1997.10487468
- Argonne Leadership Computing Facility, Argonne National Laboratory, http://www.alcf.anl.gov.
- I. I. Bondarenko, et al, Group Constants for Nuclear Reactor Calculations, Consultants Bureau Enterprises, Inc., New York (1964).
- M. Segev, “A Theory of Resonance-Group Self-Shielding,” Nucl. Sci. and Eng., 56, 72 (1975). https://doi.org/10.13182/NSE75-A26621
- R. E. MacFarlane and D. W. Muir, “The NJOY Nuclear Data Processing System Version 91,” LA-12740-M, Los Alamos National Laboratory (1994).
- L. B. Levitt, “The Probability Table Method for Treating Unresolved Resonances in Monte Carlo Criticality Calculations,” Trans. Am. Nucl. Soc. 14, 648 (1971).
- M. N. Nikolaev, et al., “Method of Subgroups for Accounting of Resonance Structure of Cross-sections in Neutron Calculations,” Atomn. Energ. 29, 11 (1970).
- D. E. Cullen, “Application of the Probability Table Method to Multi-group Calculations of Neutron Transport,” Nucl. Sci. Eng. 55, 387 (1974). https://doi.org/10.13182/NSE74-3
- P. Ribon and J. M. Maillard, “Les Tables De Probabilite Applications Au Traitement Des Sections Efficaces Pour La Neutronique,” Report CEA-N, NEACRP-L-294 (1986).
- M. J. Grimstone, J. D. Tullet, and G. Rimpault., “Accurate Treatment of Fast Reactor Fuel Assembly Heterogeneity with the ECCO Cell Code,” International Conference on the Physics of Reactors: Operation Design and Computation, PHYSOR 90, April 23-27 (1990).
- R. N. Hwang, “A Rigorous Pole Representation of Multilevel Cross Sections and Its Practical Applications,” Nucl. Sci. Eng., 96, 192 (1987). https://doi.org/10.13182/NSE87-A16381
- R. N. Hwang, “Efficient Methods for the Treatment of Resonance Integrals,” Nucl. Sci. Eng., 52, 157 (1973). https://doi.org/10.13182/NSE73-A28186
- W. M. Stacey Jr., “Continuous Slowing Down Theory Applied to Fast-Reactor Assemblies,” Nucl. Sci. Eng., 41, 381 (1970). https://doi.org/10.13182/NSE70-A19096
- C. H. Lee, W. S. Yang, and R. N. Hill, “Initial Verification and Validation of ENDF/B-VII.0 Libraries of MC2-2 against Fast Critical Systems,” Trans. Am. Nucl. Soc., 97, 842 (2007).
- S. J. Kim, W. S. Yang, and C. H. Lee, “Analysis of ZPPR-15 Critical Experiments with ENDF/B-V.2 and ENDF/BVII.0 Data,” Proc. of PHYSOR 2008, Interlaken, Switzerland, September 14-19, 2008.
- International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, Organization for Economic Co-operation and Development - Nuclear Energy Agency (OECD-NEA), September 2009.
- International Handbook of Evaluated Reactor Physics Benchmark Experiments, NEA/NSC/DOC (2006)1, Organization for Economic Co-operation and Development - Nuclear Energy Agency (OECD-NEA), March 2009.
- H. F. McFarlane, et al., “Benchmark Physics Tests in the Metallic-Fueled Assembly ZPPR-15,” Nucl. Sci. Eng. 101, 137 (1989). https://doi.org/10.13182/NSE101-137
- W. S. Yang and S. J. Kim, Private Communications, Argonne National Laboratory and Korea Atomic Energy Research Institute, September 30, 2009.
- M. B. Chadwick et al., “ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology,” Nucl. Data Sheets, 107, 2931 (2006). https://doi.org/10.1016/j.nds.2006.11.001
- F. B. Brown, et al. “MCNP5-1.51 Release Notes,” LA-UR-09-00384, Los Alamos National Laboratory (2009).
- R. N. Blomquist, “VIM Continuous Energy Monte Carlo Transport Code,” Proc. Intl. Conf. on Mathematics, Computations, Reactor Physics and Environmental Analysis, Portland, OR, April 30-May 4, 1995.
- T. Takeda and H. Ikeda, “3-D Neutron Transport Benchmarks,” NEACRP-1-300, Organization of Economic Cooperation and Development - Nuclear Energy Agency (March 1991).
- Y. I. Chang, et al., “Advanced Burner Test Reactor Preconceptual Design Report,” ANL-ABR-1 (ANL-AFCI-173), Argonne National Laboratory, 2006.
- W. S. Yang, T. K. Kim, R. N. Hill, “Core Design Studies for Advanced Burner Test Reactor,” Proc. of ICAPP 2007, Nice Acropolis, France, May 13-18, 2007.
- M. A. Smith, N. Tsoulfanidis, E. E. Lewis, G. Palmiotti and T. A. Taiwo, “Higher Order Angular Capabilities of the VARIANT Code,” Trans. Am. Nucl. Soc., 86, 321 (2002).
- R. D. Lawrence, “Progress in Nodal Methods for the Solution of the Neutron Diffusion and Transport Equations,” Prog. Nucl. Energy, 17, 271 (1986). https://doi.org/10.1016/0149-1970(86)90034-X
- D. Kaushik, M. A. Smith, A. Wollaber, B. Smith, A. Siegel, W. S. Yang, “Enabling High-Fidelity Neutron Transport Simulations on Petascale Architectures,” Proc. of Int. Conf. for High Performance Computing, Networking, Storage and Analysis, Portland, Or, November 14-20, 2009 (Gordon Bell Award Finalist Paper).
- Julich Supercomputing Center, Julich Forschungszentrum, http://www.fz-juelich.de/jsc/jugene.
- National Center for Computational Sciences, Oak Ridge National Laboratory, http://www.nccs.gov.
Cited by
- Design of Ultralong-Cycle Fast Reactor Employing Breed-and-Burn Strategy vol.183, pp.3, 2013, https://doi.org/10.13182/NT13-A19430
- A hybrid method to generate few-group cross sections for fast reactor analysis vol.55, pp.8, 2018, https://doi.org/10.1080/00223131.2018.1452650