• Title/Summary/Keyword: Multigene family

Search Result 31, Processing Time 0.028 seconds

New Finding of Golovinomyces salviae Powdery Mildew on Glechoma longituba (Lamiaceae), Besides Its Original Host Salvia spp.

  • In-Young Choi;Lamiya Abasova;Joon-Ho Choi;Young-Joon Choi;Hyeon-Dong Shin
    • The Korean Journal of Mycology
    • /
    • v.51 no.3
    • /
    • pp.239-243
    • /
    • 2023
  • The Golovinomyces biocellatus complex is known to consist of powdery mildew from the Golovinomyces genus, associated with host plants from the Lamiaceae family. Recent molecular phylogenetic analyses have resolved the taxonomic composition of this complex, and Golovinomyces biocellatus sensu stricto is considered to be a pathogen of Glechoma species, globally. However, this paper presents a new finding of Golovinomyces salviae on Glechoma longituba, besides its original host species of Salvia. This information was inferred by molecular phylogenetic analyses from the multi-locus nucleotide sequence dataset of intergeneric spacer (IGS), internal transcribed spacer (ITS), large subunit (LSU) of rDNA, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene. Further, the asexual morphology of this fungus is described and illustrated.

Molecular Cloning and Expression of Sequence Variants of Manganese Superoxide Dismutase Genes from Wheat

  • Baek, Kwang-Hyun;Skinner, Daniel Z.
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.77-85
    • /
    • 2010
  • Reactive oxygen species (ROS) are very harmful to living organisms due to the potential oxidation of membrane lipids, DNA, proteins, and carbohydrates. transformed E.coli strain QC 871, superoxide dismutase (SOD) double-mutant, with three sequence variant MnSOD1, MnSOD2, and MnSOD3 manganese superoxide dismutase (MnSOD) gene isolated from wheat. Although all QC 871 transformants grown at $37^{\circ}C$ expressed mRNA of MnSOD variants, only MnSOD2 transformant had functional SOD activity. MnSOD3 expressed active protein when grown at $22^{\circ}C$, however, MnSOD1 did not express functional protein at any growing and induction conditions. The sequence comparison of the wheat MnSOD variants revealed that the only amino acid difference between the sequence MnSOD2 and sequences MnSOD1 and 3 is phenylalanine/serine at position 58 amino acid. We made MnSOD2S58F gene, which was made by altering the phenylalaine to serine at position 58 in MnSOD2. The expressed MnSOD2S58F protein had functional SOD activity, even at higher levels than the original MnSOD2 at all observed temperatures. These data suggest that amino acid variation can result in highly active forms of MnSOD and the MnSOD2S58F gene can be an ideal target used for transforming crops to increase tolerance to environmental stresses.

GSTT1 Null Genotype Distribution in the Kumaun Region of Northern India

  • Bag, Arundhati;Upadhyay, Saloni;Jeena, Lalit M.;Pundir, Princi;Jyala, Narayan S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.87-89
    • /
    • 2013
  • Glutathione S-transferases (GSTs) constitute a multigene family of multifunctional phase II metabolic enzymes. GSTT1, an important member of this group has a wide range of substrates including carcinogens. Total homozygous deletion or null genotype resulting in total lack of enzyme activity exists in populations for this enzyme. Since the null genotype may contribute to lower detoxification of carcinogens, this genotype is expected to increase cancer risk. The frequency of the GSTT1 null genotype is known to vary significantly among populations. However, little is known about its distribution in the hilly Kumaun region of northern India. Therefore, in this study, we determined the prevalence of the GSTT1 null polymorphism in the Kumaun popilation by conducting duplex PCR in 365 voluntary healthy individuals. The GSTT1 null genotype was detected in 18.4% of the individuals. Since GSTs play significant role in xenobiotic metabolism, the present data on GSTT1 genotype distribution should contribute in understanding genetic association with cancer risk in this understudied population.

Silencing of CaCDPK4 ( Capsicum annuum Calcium Dependent Protein Kinase) and ItsOrtholog, NbCDPK5 Induces Cell Death in Nicotiana benthamiana

  • Eunsook Chung;Kim, Young-Cheol;Oh, Sang-Keun;Younghee Jung;Kim, Soo-Yong;Park, Doil
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.77.1-77
    • /
    • 2003
  • We have isolated a full-length cDNA clone, CaCDPK4 encoding a typical calcium-dependent protein kinase (CDPK) from hot pepper cDNA library. Genomic southern blot analysis showed that it belongs to a multigene family, but represents a single copy gone in hot pepper genome. RNA expression pattern of this gene revealed that it is induced by infiltration of Xanthomonas axonopodis pv. glycines Bra into hot pepper leaves but not by water deficit stress. However, high salt treatment of NaCl (0.4 M) solution to hot pepper plants strongly induced CaCDPK4 gene. In addition, this gene is weakly responsive to the exogenous application of salicylic acid or ethephon. Biochemical study of the GST-CaCDPK4 recominant protein showed that it autophosphorylates in vitro and the presence of EGTA, a calcium chelater, eliminates the kinase activity of the recombinant protein. As a way to identify the in vivo function of CaCDPK4 in plants, VIGS (Virus-Induced Gene Silencing) was employed. Agrobacterium-mediated TRV silencing construct containing the kinase and calmodulin domain of CaCDPK4 resulted in cell death of Nicotiana benthamiana plants. A highly homologous H benthamiana CDPK gene, NbCDPK5, to CaCDPK4 was cloned from N. benthamiana cDNA library. VIGS of NbCDPK5 also resulted in cell death. The molecular characterization of this cell death phenotype is being under investigation.

  • PDF

Expression Analysis of Cathepsin F during Embryogenesis and Early Developmental Stage in Olive Flounder (Paralichthys olivaceus)

  • Lee, Jang-Wook;Lee, Young Mee;Yang, Hyun;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Hwang, In Joon;Kim, Sung Yeon;Lee, Jeong-Ho
    • Development and Reproduction
    • /
    • v.17 no.3
    • /
    • pp.221-229
    • /
    • 2013
  • Cathepsins are members of the multigene family of lysosomal cysteine proteinases and have regulated function in several life processes. The potential role of cathepsin F cysteine gene was expected as protease in the yolk processing mechanism during early developmental stage, but expression analysis was unknown after fertilization. The alignment analysis showed that amino acid sequence of cathepsin F from olive flounder liver expressed sequence tag (EST) homologous to cathepsin F of other known cathepsin F sequences with 87-98% identity. In this study, we examined the gene expression analysis of cathepsin F in various tissues at variety age flounder. Tissue distribution of the cathepsin F mRNA has been shown to be ubiquitous and constitutive pattern regardless of age in each group, although derived from cDNA library using liver sample. The mRNA level of cathepsin F more increased as developmental proceed during embryogenesis and early developmental stage, especially increased in the blastula, hatching stage and 3 days post hatching (dph). As a result, it may suggest that the proteolysis of yolk proteins (YPs) has been implicated as a mechanism for nutrient supply during early larval stages in olive flounder.

Expression and Promoter Analyses of Pepper CaCDPK4 (Capsicum annuum calcium dependent protein kinase 4) during Plant Defense Response to Incompatible Pathogen

  • Chung, Eun-Sook;Oh, Sang-Keun;Park, Jeong-Mee;Choi, Do-Il
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.76-89
    • /
    • 2007
  • CaCDPK4, a full-length cDNA clone encoding Capsicum annuum calcium-dependent protein kinase 4, was isolated from chili pepper (Capsicum annuum L.). Deduced amino acid sequence of CaCDPK4 shares the highest homology with tobacco NpCDPK8 and chickpea CaCDPK2 with 79% identity. Genomic blot analyses revealed that CaCDPK4 is present as a single copy in pepper genome, but it belongs to a multigene family. CaCDPK4 was highly induced when pepper plants were inoculated with an incompatible bacterial pathogen. Induced levels of CaCDPK4 transcripts were also detected in pepper leaves by the treatment of ethephon, an ethylene-inducing agent, and high-salt stress condition. The bacterial-expressed GST-CaCDPK4 protein showed to retain the autophosphorylation activity in vitro. GUS expression driven by CaCDPK4 promoter was examined in transgenic Arabidopsis containing transcriptional fusion of CaCDPK4 promoter. GUS expression under CaCDPK4 promoter was strong in the root and veins of the seedlings. GW (-1965) and D3 (-1377) promoters conferred on GUS expression in response to inoculation of an incompatible bacterial pathogen, but D4-GUS (-913) and DS-GUS (-833) did not. Taken together, our results suggest that CaCDPK4 can be implicated on signal transduction pathway of defense response against an incompatible bacterial pathogen in pepper.

The effect of glutathione S-transferase M1 and T1 polymorphisms on blood pressure, blood glucose, and lipid profiles following the supplementation of kale (Brassica oleracea acephala) juice in South Korean subclinical hypertensive patients

  • Han, Jeong-Hwa;Lee, Hye-Jin;Kim, Tae-Seok;Kang, Myung-Hee
    • Nutrition Research and Practice
    • /
    • v.9 no.1
    • /
    • pp.49-56
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Glutathione S-transferase (GST) forms a multigene family of phase II detoxification enzymes which are involved in the detoxification of reactive oxygen species. This study examines whether daily supplementation of kale juice can modulate blood pressure (BP), levels of lipid profiles, and blood glucose, and whether this modulation could be affected by the GSTM1 and GSTT1 polymorphisms. SUBJECTS/METHODS: 84 subclinical hypertensive patients showing systolic BP over 130 mmHg or diastolic BP over 85 mmHg received 300 ml/day of kale juice for 6 weeks, and blood samples were collected on 0-week and 6-week in order to evaluate plasma lipid profiles (total cholesterol, triglyceride, HDL-cholesterol, and LDL-cholesterol) and blood glucose. RESULTS: Systolic and diastolic blood pressure was significantly decreased in all patients regardless of their GSTM1 or GSTT1 polymorphisms after kale juice supplementation. Blood glucose level was decreased only in the GSTM1-present genotype, and plasma lipid profiles showed no difference in both the GSTM1-null and GSTM1-present genotypes. In the case of GSTT1, on the other hand, plasma HDL-C was increased and LDL-C was decreased only in the GSTT1-present type, while blood glucose was decreased only in the GSTT1-null genotype. CONCLUSIONS: These findings suggest that the supplementation of kale juice affected blood pressure, lipid profiles, and blood glucose in subclinical hypertensive patients depending on their GST genetic polymorphisms, and the improvement of lipid profiles was mainly greater in the GSTT1-present genotype and the decrease of blood glucose was greater in the GSTM1-present or GSTT1-null genotypes.

Paralytic Peptide Binding Protein (PP-BP) Gene Expression During Egg Diapause and Its Multi-Gene Organization in the Silkworm Bombyx mori

  • Sirigineedi, Sasibhushan;Murthy, Geetha N.;Rao, Guruprasada;Ponnuvel, Kangayam M.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.1
    • /
    • pp.31-40
    • /
    • 2013
  • Paralytic peptide binding proteins (PP-BP) are 30KP proteins that show similarity to ENF binding proteins. The ENF-BP act as active regulators of ENF peptides. ENF peptides are multifunctional insect cytokines. The comparison of gene expression in diapause induced and non-diapause eggs at different time intervals after oviposition showed an upregulation of PP at 18h as well as PP-BP at 12 and 18h after oviposition along with few other genes. The current study has been taken up to investigate the role of PP as well as PP-BP in diapause induction in polyvoltine silkworms and to study the multigene organization of PP-BP in the Bombyx mori genome. The tissue specific expression analysis revealed that, PP-BP is highly expressed in fat body followed by egg and brain while no expression was observed in midgut. The expression levels of PP and PP-BP in diapause and non-diapause eggs from 0h to 48h after oviposition, validated through realtime PCR revealed that PP is highly expressed at 18 and 24h while PP-BP expression is higher at 12 and 18h time intervals suggesting their possible role in diapause induction. The whole genome survey of the PP-BP paralogous sequences revealed a total of 46 B. mori PP-BP homologs that are classified into 3 categories viz., ENF-BP, Typical 30KPs and serine/threonine rich 30KPs. These paralogous sequences are distributed on chromosomes 7, 20, 22 and 24, all 30KP and S/T rich 30KP proteins are present in the same locus of chromosome 20.

The ABA Effect on the Accumulation of an Invertase Inhibitor Transcript that Is Driven by the CAMV35S Promoter in ARABIDOPSIS

  • Koh, Eun-Ji;Lee, Sung June;Hong, Suk-Whan;Lee, Hoi Seon;Lee, Hojoung
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.236-242
    • /
    • 2008
  • Invertase (${\beta}$-D-fructofuranosidase; EC 3.2.1.26) catalyzes the conversion of sucrose into glucose and fructose and is involved in an array of important processes, including phloem unloading, carbon partitioning, the response to pathogens, and the control of cell differentiation and development. Its importance may have caused the invertases to evolve into a multigene family whose members are regulated by a variety of different mechanisms, such as pH, sucrose levels, and inhibitor proteins. Although putative invertase inhibitors in the Arabidopsis genome are easy to locate, few studies have been conducted to elucidate their individual functions in vivo in plant growth and development because of their high redundancy. In this study we assessed the functional role of the putative invertase inhibitors in Arabidopsis by generating transgenic plants harboring a putative invertase inhibitor gene under the control of the CaMV35S promoter. A transgenic plant that expressed high levels of the putative invertase inhibitor transcript when grown under normal conditions was chosen for the current study. To our surprise, the stability of the invertase inhibitor transcripts was shown to be down-regulated by the phytohormone ABA (abscisic acid). It is well established that ABA enhances invertase activity in vivo but the underlying mechanisms are still poorly understood. Our results thus suggest that one way ABA regulates invertase activity is by down-regulating its inhibitor.

Isolation, Molecular Phylogeny, and Tissue Distribution of Four cDNAs Encoding the Apolipoprotein Multigene Family in Barred Knifejaw, Oplegnathus fasciatus (Teleostei, Perciformes)

  • Kim, Keun-Yong;Cho, Young-Sun;Kim, Sung-Koo;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.2
    • /
    • pp.88-97
    • /
    • 2008
  • Lipoproteins are complexes of lipids and specific apolipoproteins that are involved in lipid transport and redistribution among various tissues. In this study, we isolated full-length apolipoprotein cDNA sequences encoding apolipoprotein A-I (apoA-I), apoE, apoC-II, and apo-14 kDa in barred knifejaw, Oplegnathus fasciatus. In addition, we reconstructed phylogenetic trees and investigated mRNA tissue distributions. Alignment analyses of amino acid sequences revealed that secondary structures of the polypeptides apoA-I, apoE, and apoC-II in barred knifejaw are well conserved with their teleostean and mammalian counterparts in terms of characteristic tandem repetitive units forming amphipathic ${\alpha}$-helices. Both the sequence alignment data and cleavage sites of apo-14 kDa indicated a clear differentiation between Percomorpha and Cypriniformes. Meanwhile, the phylogenetic trees of apolipoprotein sub-families suggested that the common ancestor prior to the split of the Actinopterygii (ray-finned fishes) and Sarcopterygii (tetrapods) would have possessed the primordial protein-encoding genes. Tissue distribution of each apolipoprotein transcript determined by semi-quantitative RTPCR showed that barred knifejaw apoA-I transcripts were more or less ubiquitously expressed in the liver, intestines, brain, muscle, spleen, and kidney. The most striking difference from previous observations on barred knifejaw was the ubiquitous expression of apoE across all somatic tissues. Barred knifejaw apoC-II showed tissue-specific expression in the liver and intestines, while the liver and brain were the major sites of apo-14kDa mRNA synthesis.