• 제목/요약/키워드: Multidrug resistant bacteria

검색결과 99건 처리시간 0.025초

A Literature Review of Infection with ESKAPE Pathogens in Oral and Maxillofacial Region

  • Park, Sang-Yeap;You, Jae-Seek;Moon, Seong-Yong;Oh, Ji-Su;Choi, Hae-In;Jung, Gyeo-Woon
    • Journal of Oral Medicine and Pain
    • /
    • 제46권3호
    • /
    • pp.75-83
    • /
    • 2021
  • Odontogenic infection in the oral and maxillofacial regions caused by bacteria (mostly of oral origin) is one of the most common diseases encountered by dentists. Localized infection can easily be treated with incision and drainage followed by antibiotics. Emergence of multidrug resistant (MDR) bacteria called "Superbacteria" has become one of the serious problems in modern society, due to its small window of opportunity for treatment and high casualty. The acronym "ESKAPE", encompassing the common and serious MDR pathogens stand for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. Literature search was performed in Medline, PubMed and Google Scholar ranging from 2012 to 2020. ESKAPE patient's infection period was longer than that of non-ESKAPE group, and the treatment method due to antibiotic resistance was also complicated. The purpose of this study is to investigate infection caused by ESKAPE pathogens in the oral and maxillofacial regions through literature review and to inform dental surgeons of the danger of ESKAPE pathogens and to suggest viable treatment options. Many studies worldwide reported infections associated with ESKAPE pathogens, but only limited number of studies targeted infection in oral and maxillofacial regions. Further research is required with more data on ESKAPE bacteria and their infection, especially in oral and maxillofacial regions.

Listeria Species in Broiler Poultry Farms: Potential Public Health Hazards

  • Dahshan, Hesham;Merwad, Abdallah Mohamed Amin;Mohamed, Taisir Saber
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권9호
    • /
    • pp.1551-1556
    • /
    • 2016
  • Broiler meat production worldwide has been plagued by lethal food-poisoning bacteria diseases, including listeriosis. A fatality rate of 15.6% was recorded in human beings in the EU in 2015. During 2013, a total of 200 poultry farm samples, including litter, chicken breast, farm feed, and drinking water, were collected to generate baseline data for the characterization of the genus Listeria in broiler poultry farms. Listeria spp. were detected in a total of 95 (47.5%) poultry farm samples. The isolates of Listeria spp. included L. innocua (28.5%), L. ivanovii (12.5%), L. welshimeri (4.5%), and L. monocytogenes and L. seeligeri (1% each). Listeria spp. contamination rates were higher in farm feed (70%), followed by litter (52.5%), chicken breasts (42.2%), and drinking water (10%). Almost all Listeria spp. isolates were resistant to more than three classes of antibiotics (multidrug resistant). Besides this, we observed a significant resistance level to penicillin and fluoroquinolone drugs. However, lower resistance levels were recorded for broad-spectrum cephalosporins. The inlA, inlC, and inlJ virulence genes were detected in almost all of the L. monocytogenes isolates. Thus, food safety management approaches and interventions at all stages of the broiler rearing cycle were needed to control cross-contamination and the zoonotic potential of listeriosis.

The current state of phage therapy in livestock and companion animals

  • Youbin Choi;Woongji Lee;Joon-Gi Kwon;Anna Kang;Min-Jin Kwak;Ju-Young Eor;Younghoon Kim
    • Journal of Animal Science and Technology
    • /
    • 제66권1호
    • /
    • pp.57-78
    • /
    • 2024
  • In a global context, bacterial diseases caused by pathogenic bacteria have inflicted sustained damage on both humans and animals. Although antibiotics initially appeared to offer an easy treatment for most bacterial infections, the recent rise of multidrug-resistant bacteria, stemming from antibiotic misuse, has prompted regulatory measures to control antibiotic usage. Consequently, various alternatives to antibiotics are being explored, with a particular focus on bacteriophage (phage) therapy for treating bacterial diseases in animals. Animals are broadly categorized into livestock, closely associated with human dietary habits, and companion animals, which have attracted increasing attention. This study highlights phage therapy cases targeting prominent bacterial strains in various animals. In recent years, research on bacteriophages has gained considerable attention, suggesting a promising avenue for developing alternative substances to antibiotics, particularly crucial for addressing challenging bacterial diseases in the future.

Anti-Endotoxin 9-Meric Peptide with Therapeutic Potential for the Treatment of Endotoxemia

  • Krishnan, Manigandan;Choi, Joonhyeok;Choi, Sungjae;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.25-32
    • /
    • 2021
  • Inflammatory reactions activated by lipopolysaccharide (LPS) of gram-negative bacteria can lead to severe septic shock. With the recent emergence of multidrug-resistant gram-negative bacteria and a lack of efficient ways to treat resulting infections, there is a need to develop novel anti-endotoxin agents. Antimicrobial peptides have been noticed as potential therapeutic molecules for bacterial infection and as candidates for new antibiotic drugs. We previously designed the 9-meric antimicrobial peptide Pro9-3 and it showed high antimicrobial activity against gram-negative bacteria. Here, to further examine its potency as an anti-endotoxin agent, we examined the anti-endotoxin activities of Pro9-3 and elucidated its mechanism of action. We performed a dye-leakage experiment and BODIPY-TR cadaverine and limulus amebocyte lysate assays for Pro9-3 as well as its lysine-substituted analogue and their enantiomers. The results confirmed that Pro9-3 targets the bacterial membrane and the arginine residues play key roles in its antimicrobial activity. Pro9-3 showed excellent LPS-neutralizing activity and LPS-binding properties, which were superior to those of other peptides. Saturation transfer difference-nuclear magnetic resonance experiments to explore the interaction between LPS and Pro9-3 revealed that Trp3 and Tlr7 in Pro9-3 are critical for attracting Pro9-3 to the LPS in the gram-negative bacterial membrane. Moreover, the anti-septic effect of Pro9-3 in vivo was investigated using an LPS-induced endotoxemia mouse model, demonstrating its dual activities: antibacterial activity against gram-negative bacteria and immunosuppressive effect preventing LPS-induced endotoxemia. Collectively, these results confirmed the therapeutic potential of Pro9-3 against infection of gram-negative bacteria.

메티실린-내성 포도상구균에 대하여 EDTA 및 Sodium Azide 병용에 의한 우스닌산 약효증대 (Potentiating Activity of (+)-Usnic Acid on EDTA and Sodium Azide Methicillin-resistant Staphylococcus aureus)

  • 이영섭;김혜성;이재원;이대영;김금숙;김현욱;노건민;이승은;이순애;송옥희;권동렬
    • 생약학회지
    • /
    • 제47권2호
    • /
    • pp.122-127
    • /
    • 2016
  • Methicillin-Resistant Staphylococcus aureus(MRSA) is a multidrug-resistant(MDR) strain. (+)-Usnic acid(UA) is uniquely found in lichens, and is especially abundant in genera such as Usnea and Cladonia. UA has antimicrobial activity against human and plant pathogens. Therefore, UA may be a good antibacterial drug candidate for clinical development. In search of a natural products capable of inhibiting this multidrug-resistant bacteria, we have investigated the antimicrobial activity of UA against 17 different strains of the bacterium. In this study, the effects of a combination of UA and permeable agents against MRSA were investigated. For the measurement of cell wall permeability, UA with concentration of Ethylenediaminetetraacetic acid(EDTA) was used. In the other hand, Sodium azide($NaN_3$) was used as inhibitors of ATPase. Against the 17 strains, the minimum inhibitory concentrations(MICs) of UA were in the range of $7.81-31.25{\mu}g/ml$. EDTA or $NaN_3$ cooperation against MRSA showed synergistic activity on cell wall. UA and in combination with EDTA and $NaN_3$ could lead to the development of new combination antibiotics against MRSA infection.

곰소만 해역의 바지락(Ruditapes philippinarum)에서 분리한 대장균 (Escherichia coli)의 항균제 내성 및 병원성 유전자의 보유성 (Antimicrobial Resistance and the Presence of Virulence Genes in Escherichia coli Strains Isolated from Ruditapes philippinarum in Gomso Bay, Korea)

  • 김태옥;엄인선;박광호;박권삼
    • 한국수산과학회지
    • /
    • 제49권6호
    • /
    • pp.800-806
    • /
    • 2016
  • In total, 151 Escherichia coli isolates from Ruditapes philippinarum in Gomso Bay were analyzed for their susceptibility to 18 different antimicrobial agents and for genes associated with virulence. For virulence genes, each strain of the isolates was positive for the enterotoxigenic E. coli (ETEC)-specific heat-stable toxin (estA), enteroinvasive E. coli (EIEC)-specific invasion-associated locus (iaa) gene and enteropathogenic E. coli (EPEC)-specific attaching and effacing (eae) gene. According to a disk diffusion susceptibility test, resistance to ampicillin was most prevalent (23.2%), followed by resistance to amoxicillin (22.5%), ticarcillin (20.5%), tetracycline (18.5%), nalidixic acid (12.6%), ciprofloxacin (10.6%), streptomycin (9.9%), and chloramphenicol (6.6%). More than 35.8% of the isolates were resistant to at least one antimicrobial agent, and 19.9% were resistant to four or more classes of antimicrobials; these were consequently defined as multidrug resistant. Minimum inhibitory concentration (MIC) ranges for the antimicrobial resistance of the 15 different antimicrobial agents of 54 E. coli strains were confirmed by varying the concentrations from $32-2,048{\mu}g/mL$. Overall, these results not only provide novel insights into the necessity for seawater and R. philippinarum sanitation in Gomso Bay but they also help to reduce the risk of contamination by antimicrobial-resistant bacteria.

인천지역 반려견 유래 세균의 항생제 내성 모니터링 조사 (A monitoring survey on antimicrobial resistance of bacterial isolates from companion dogs in Incheon)

  • 김경미;조민행;이승환;김경호;이정구;이성모
    • 한국동물위생학회지
    • /
    • 제42권2호
    • /
    • pp.53-60
    • /
    • 2019
  • This study was performed to investigate antimicrobial resistance in bacterial isolates obtained from companion dogs in veterinary hospitals and an animal shelter in Incheon. Drug resistance was examined respectively with the isolates of Escherichia coli, Enterococcus faecalis, and Staphylococcus pseudintermedius. The prevalence of drug resistance was calculated for each bacterial species towards 163 E. coli isolates, 156 E. faecalis isolates, and 86 S. pseudintermedius isolates by using selected antimicrobials. E. coli isolates were highly resistant to ampicillin, ciprofloxacin and tetracycline (47.9%, 28.2% and 28.2%, respectively). E. faecalis isolates were highly resistant to quinupristin-dalfopristin, tetracycline, kanamycin, rifampicin (69.8%, 66.0%, 53.8% and 51.9%, respectively). Higher levels of resistance were detected for ampicillin, penicillin, tetracycline, erythromycin, trimethoprim/sulfamethoxazole, telithromycin in S. pseudintermedius isolates (83.7%~52.6%, respectively). Occurrence of methicillin-resistant S. pseudintermedius (MRSP) was confirmed by oxacillin disc diffusion method, resulted in 23.3% occurrence among the S. pseudintermedius isolates (20/86 strains). The occurrence ratio of multidrug-resistance in the isolates of E. coli, E. faecalis, and S. pseudintermedius was 34.5%, 56.9%, and 67.9%, respectively. In this study, higher levels of antimicrobial drug resistance were observed in bacterial isolates obtained from dogs in Incheon. A regular monitoring and surveillance program should be implemented to prevent the emergence and spread of the drug-resistant bacteria carried in companion dogs.

Late Respiratory Infection after Lung Transplantation

  • Kim, Sang Young;Shin, Jung Ar;Cho, Eun Na;Byun, Min Kwang;Kim, Hyung Jung;Ahn, Chul Min;Haam, Suk Jin;Lee, Doo Yun;Paik, Hyo Chae;Chang, Yoon Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • 제74권2호
    • /
    • pp.63-69
    • /
    • 2013
  • Background: Aiming to improve outcome of lung transplantation (LTx) patients, we reviewed risk factors and treatment practices for the LTx recipients who experienced respiratory infection in the late post-LTx period (>1 month after LTx). Methods: We analyzed the clinical data of 48 recipients and donors from 61 LTx, who experienced late respiratory infections. Late respiratory infections were classified according to the etiology, time of occurrence, and frequency of donor-to-host transmission or colonization of the recipient prior to transplantation. Results: During the period of observation, 42 episodes of respiratory infections occurred. The organisms most frequently involved were gram (-) bacteria: Acinetobacter baumannii (n=13, 31.0%), Pseudomonas aeruginosa (n=7, 16.7%), and Klebsiella pneumoniae (n=4, 10.0%). Among the 42 episodes recorded, 14 occurred in the late post-LTx period. These were bacterial (n=6, 42.9%), fungal (n=2, 14.3%), viral (n=4, 28.5%), and mycobacterial (n=2, 14.3%) infections. Of 6 bacterial infections, 2 were from multidrug-resistant (MDR) A. baumannii and one from each of MDR P. aeruginosa, extended spectrum ${\beta}$-lactamase (+) K. pneumoniae, methicillin-resistant Staphylococcus aureus and Streptococcus pneumoniae. Infection-related death occurred in 6 of the 14 episodes (43%). Conclusion: Although the frequency of respiratory infection decreased sharply in the late post-LTx period, respiratory infection was still a major cause of mortality. Gram (-) MDR bacteria were the agents most commonly identified in these infections.

Biophysical Studies Reveal Key Interactions between Papiliocin-Derived PapN and Lipopolysaccharide in Gram-Negative Bacteria

  • Durai, Prasannavenkatesh;Lee, Yeongjoon;Kim, Jieun;Jeon, Dasom;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권5호
    • /
    • pp.671-678
    • /
    • 2018
  • Papiliocin, isolated from the swallowtail butterfly (Papilio xuthus), is an antimicrobial peptide with high selectivity against gram-negative bacteria. We previously showed that the N-terminal helix of papiliocin (PapN) plays a key role in the antibacterial and anti-inflammatory activity of papiliocin. In this study, we measured the selectivity of PapN against multidrug-resistant gram-negative bacteria, as well as its anti-inflammatory activity. Interactions between Trp2 of PapN and lipopolysaccharide (LPS), which is a major component of the outer membrane of gram-negative bacteria, were studied using the Trp fluorescence blue shift and quenching in LPS micelles. Furthermore, using circular dichroism, we investigated the interactions between PapN and LPS, showing that LPS plays critical roles in peptide folding. Our results demonstrated that Trp2 in PapN was buried deep in the negatively charged LPS, and Trp2 induced the ${\alpha}$-helical structure of PapN. Importantly, docking studies determined that predominant electrostatic interactions of positively charged arginine residues in PapN with phosphate head groups of LPS were key factors for binding. Similarly, hydrophobic interactions by aromatic residues of PapN with fatty acid chains in LPS were also significant for binding. These results may facilitate the development of peptide antibiotics with anti-inflammatory activity.

Draft Genome Analysis of Antimicrobial Streptomyces Isolated from Himalayan Lichen

  • Kim, Byeollee;Han, So-Ra;Lamichhane, Janardan;Park, Hyun;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1144-1154
    • /
    • 2019
  • There have been several studies regarding lichen-associated bacteria obtained from diverse environments. Our screening process identified 49 bacterial species in two lichens from the Himalayas: 17 species of Actinobacteria, 19 species of Firmicutes, and 13 species of Proteobacteria. We discovered five types of strong antimicrobial agent-producing bacteria. Although some strains exhibited weak antimicrobial activity, NP088, NP131, NP132, NP134, and NP160 exhibited strong antimicrobial activity against all multidrug-resistant strains. Polyketide synthase (PKS) fingerprinting revealed results for 69 of 148 strains; these had similar genes, such as fatty acid-related PKS, adenylation domain genes, PfaA, and PksD. Although the association between antimicrobial activity and the PKS fingerprinting results is poorly resolved, NP160 had six types of PKS fingerprinting genes, as well as strong antimicrobial activity. Therefore, we sequenced the draft genome of strain NP160, and predicted its secondary metabolism using antiSMASH version 4.2. NP160 had 46 clusters and was predicted to produce similar secondary metabolites with similarities of 5-100%. Although NP160 had 100% similarity with the alkylresorcinol biosynthetic gene cluster, our results showed low similarity with existing members of this biosynthetic gene cluster, and most have not yet been revealed. In conclusion, we expect that lichen-associated bacteria from the Himalayas can produce new secondary metabolites, and we found several secondary metabolite-related biosynthetic gene clusters to support this hypothesis.