• 제목/요약/키워드: Multiclass Classification

검색결과 70건 처리시간 0.023초

Classification of Network Traffic using Machine Learning for Software Defined Networks

  • Muhammad Shahzad Haroon;Husnain Mansoor
    • International Journal of Computer Science & Network Security
    • /
    • 제23권12호
    • /
    • pp.91-100
    • /
    • 2023
  • As SDN devices and systems hit the market, security in SDN must be raised on the agenda. SDN has become an interesting area in both academics and industry. SDN promises many benefits which attract many IT managers and Leading IT companies which motivates them to switch to SDN. Over the last three decades, network attacks becoming more sophisticated and complex to detect. The goal is to study how traffic information can be extracted from an SDN controller and open virtual switches (OVS) using SDN mechanisms. The testbed environment is created using the RYU controller and Mininet. The extracted information is further used to detect these attacks efficiently using a machine learning approach. To use the Machine learning approach, a dataset is required. Currently, a public SDN based dataset is not available. In this paper, SDN based dataset is created which include legitimate and non-legitimate traffic. Classification is divided into two categories: binary and multiclass classification. Traffic has been classified with or without dimension reduction techniques like PCA and LDA. Our approach provides 98.58% of accuracy using a random forest algorithm.

SVM 학습을 이용한 다중 클래스 뉴스그룹 문서 분류 (Classification of Multiclass Newsgroup Documents Using SVM Learning)

  • 오장민;장병탁;김영택
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.60-62
    • /
    • 1999
  • 다중 클래스 문서분류는 주어진 여러 개의 관심사별로 문서를 선별해 주는 문제이다. 문서 분류 문제의 특징은 문서가 매우 높은 차원으로 표현된다는 것이다. 다른 학습 알고리즘에 비해 SVM 알고리즘은 차원을 전혀 줄이지 않고 문제를 해결한다. 본 논문에서는 SVM 학습 알고리즘을 이용하여 대규모의 뉴스 그룹 문서 분류 문제를 다룬다. 다중 클래스 문서 분류를 위해서 각 클래스에 대한 SVM학습 결과를 효과적으로 결합하였으며 실험을 통하여 SVM과 다른 학습 알고리즘과의 성능을 비교하였다.

  • PDF

EMG신호의 패턴인식을 이용한 동작판정에 관한 연구 (A study on the motion decision of the arm using pattern recognition of EMG signal)

  • 홍석교;고영길;유근호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.694-698
    • /
    • 1987
  • In this paper, the primitive and double combined motion classification of the arm is discussed using pattern recognition of EM signal. The EM signals are detected from Ag-Ag/Cl surface electrodes, and IBM PC, calculated the Likelyhood probability and the decision function on the feature space of integral absolute value. Multiclass decision rule is introduced for higher decision rate. On our experimental results from expert simulator, the decision rate of more than 78% can be obtained.

  • PDF

Hyperparameter Selection for APC-ECOC

  • Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권4호
    • /
    • pp.1219-1231
    • /
    • 2008
  • The main object of this paper is to develop a leave-one-out(LOO) bound of all pairwise comparison error correcting output codes (APC-ECOC). To avoid using classifiers whose corresponding target values are 0 in APC-ECOC and requiring pilot estimates we developed a bound based on mean misclassification probability(MMP). It can be used to tune kernel hyperparameters. Our empirical experiment using kernel mean squared estimate(KMSE) as the binary classifier indicates that the bound leads to good estimates of kernel hyperparameters.

  • PDF

다중 클래스 아다부스트 알고리즘 (Multiclass-based AdaBoost Algorithm)

  • 김태현;박동철
    • 전자공학회논문지CI
    • /
    • 제48권1호
    • /
    • pp.44-50
    • /
    • 2011
  • 본 논문은 다중 클래스 데이터의 효율적 분류를 위한 새로운 아다부스트 알고리즘을 제안한다. 기존의 아다부스트 알고리즘은 기본적으로 이진 분류기이므로 다중 클래스 데이터 분류의 적용에는 매우 제한적이었다. 이를 극복하기 위하여 제안된 알고리즘은 여러 개의 이진 분류기 대신 하나의 다중 분류기를 약 분류기로 사용함으로써 학습시간을 단축시키고 안정적인 정확도를 얻을 수 있는 장점이 있다. 제안하는 알고리즘의 성능을 평가하기 위하여 Caltech 영상 데이터베이스에서 4가지클래스의 영상 데이터를 총 800개 수집하여 영상 분류 실험을 진행하였다. 실험의 결과 제안된 다중 클래스 아다부스트 알고리즘은 Adaboost.M2 알고리즘에 비해 분류정확도는 대등한 결과를 얻었지만, 학습시간을 학습단계에 따라 83.1%까지 감소시킬 수 있었다.

Sparse Multinomial Kernel Logistic Regression

  • Shim, Joo-Yong;Bae, Jong-Sig;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제15권1호
    • /
    • pp.43-50
    • /
    • 2008
  • Multinomial logistic regression is a well known multiclass classification method in the field of statistical learning. More recently, the development of sparse multinomial logistic regression model has found application in microarray classification, where explicit identification of the most informative observations is of value. In this paper, we propose a sparse multinomial kernel logistic regression model, in which the sparsity arises from the use of a Laplacian prior and a fast exact algorithm is derived by employing a bound optimization approach. Experimental results are then presented to indicate the performance of the proposed procedure.

암 분류를 위한 분류기법의 성능비교 (Performance Comparison of Multiclass Classification Methods for cancer Classification)

  • 박윤정;박승수
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.220-222
    • /
    • 2006
  • 현재 마이크로어레이 기술은 대량의 유전자 발현 데이터 특히 암과 관련한 데이터들을 쏟아내고 있다. 이 데이터를 기반으로 암의 종류에 따른 유전자들의 차별적 발현 양상을 분석하고 발현량의 변화가 두드러지는 유전자들에 기반하여 암을 분별할 수 있는 분류 모델을 구축한 후, 이것을 암을 진단하거나 예측하는데 이용할 수 있다. 본 논문에서는 마이크로어레이 데이터를 사용해 특징추출방법과 분류를 위한 Naive Bayes, k-Nearest Neighborhood, Decision Tree, Support Vector Machine, Neural Network 알고리즘을 이용하여 최적의 조합을 찾고 어떤 알고리즘이 가장 효과적인지 실험을 통해 분석해보고 성능평가 하는 것을 목표로 한다.

  • PDF

Near Field IR (NIR) 스펙트럼 및 결정 트리 기반 기계학습을 이용한 플라스틱 재질 분류 시스템 (The Evaluation of a Plastic Material Classification System using Near Field IR (NIR) Spectrum and Decision Tree based Machine Learning)

  • 국중진
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.92-97
    • /
    • 2022
  • Plastics are classified into 7 types such as PET (PETE), HDPE, PVC, LDPE, PP, PS, and Other for separation and recycling. Recently, large corporations advocating ESG management are replacing them with bioplastics. Incineration and landfill of disposal of plastic waste are responsible for air pollution and destruction of the ecosystem. Because it is not easy to accurately classify plastic materials with the naked eye, automated system-based screening studies using various sensor technologies and AI-based software technologies have been conducted. In this paper, NIR scanning devices considering the NIR wavelength characteristics that appear differently for each plastic material and a system that can identify the type of plastic by learning the NIR spectrum data collected through it. The accuracy of plastic material identification was evaluated through a decision tree-based SVM model for multiclass classification on NIR spectral datasets for 8 types of plastic samples including biodegradable plastic.

머신러닝을 활용한 냉간압조용 선재의 다중 분류 및 지능형 매칭 시스템 개발 (Developing a Multiclass Classification and Intelligent Matching System for Cold Rolled Steel Wire using Machine Learning)

  • 이근원;이동건;권영준;조기훈;박성수;조기섭
    • 열처리공학회지
    • /
    • 제36권2호
    • /
    • pp.69-76
    • /
    • 2023
  • In this study, we present a system for identifying equivalent grades of standardized wire rod steel based on alloy composition using machine learning techniques. The system comprises two models, one based on a supervised multi-class classification algorithm and the other based on unsupervised autoencoder algorithm. Our evaluation showed that the supervised model exhibited superior performance in terms of prediction stability and reliability of prediction results. This system provides a useful tool for non-experts seeking similar grades of steel based on alloy composition.

소프트맥스 함수 특성을 활용한 침입탐지 모델의 공격 트래픽 분류성능 향상 방안 (Improvement of Attack Traffic Classification Performance of Intrusion Detection Model Using the Characteristics of Softmax Function)

  • 김영원;이수진
    • 융합보안논문지
    • /
    • 제20권4호
    • /
    • pp.81-90
    • /
    • 2020
  • 현실 세계에서는 기존에 알려지지 않은 새로운 유형의 변종 공격이 끊임없이 등장하고 있지만, 인공신경망과 지도학습을 통해 개발된 공격 트래픽 분류모델은 학습을 실시하지 않은 새로운 유형의 공격을 제대로 탐지하지 못한다. 기존 연구들 대부분은 이러한 문제점을 간과하고 인공신경망의 구조 개선에만 집중한 결과, 다수의 새로운 공격을 정상 트래픽으로 분류하는 현상이 빈번하게 발생하여 공격 트래픽 분류성능이 심각하게 저하되었다. 한편, 다중분류 문제에서 각 클래스에 대한 분류가 정답일 확률을 결과값으로 출력하는 소프트맥스(softmax) 함수도 학습하지 않은 새로운 유형의 공격 트래픽에 대해서는 소프트맥스 점수를 제대로 산출하지 못하여 분류성능의 신뢰도 또는 정확도를 제고하는데 한계를 노출하고 있다. 이에 본 논문에서는 소프트맥스 함수의 이러한 특성을 활용하여 모델이 일정 수준 이하의 확률로 판단한 트래픽을 공격으로 분류함으로써 새로운 유형의 공격에 대한 탐지성능을 향상시키는 방안을 제안하고, 실험을 통해 효율성을 입증한다.