As tumors develop, they encounter microenvironmental stress, such as hypoxia and glucose depletion, due to poor vascular function, thereby leading to necrosis, which is observed in solid tumors. Necrotic cells are known to release cellular cytoplasmic contents, such as high mobility group box 1 (HMGB1), into the extracellular space. The release of HMGB1, a proinflammatory and tumor-promoting cytokine, plays an important role in promoting inflammation and metabolism during tumor development. Recently, HMGB1 was shown to induce the epithelial-mesenchymal transition (EMT) and metastasis. However, the underlying mechanism of the HMGB1-induced EMT, invasion, and metastasis is unclear. In this study, we showed that noninvasive breast cancer cells MCF-7 formed tightly packed, rounded spheroids and that the cells in the inner regions of a multicellular tumor spheroid (MTS), an in vitro model of a solid tumor, led to necrosis due to an insufficient supply of O2 and glucose. In addition, after 7 d of MTS culture, the EMT was induced via the transcription factor Snail. We also showed that HMGB1 receptors, including RAGE, TLR2, and TLR4, were induced by MTS culture. RAGE, TLR2, and TLR4 shRNA inhibited MTS growth, supporting the idea that RAGE/TLR2/TLR4 play critical roles in MTS growth. They also prevented MTS culture-induced Snail expression, pointing to RAGE/TLR2/TLR4-dependent Snail expression. RAGE, TLR2, and TLR4 shRNA suppressed the MTS-induced EMT. In human cancer tissues, high levels of RAGE, TLR2, and TLR4 were detected. These findings demonstrated that the HMGB-RAGE/TLR2/TLR4-Snail axis played a crucial role in the growth of the MTS and MTS culture-induced EMT.