• 제목/요약/키워드: Multibody Dynamics System

검색결과 146건 처리시간 0.022초

Scalar form of dynamic equations for a cluster of bodies

  • Vinogradov, Oleg
    • Structural Engineering and Mechanics
    • /
    • 제5권2호
    • /
    • pp.209-220
    • /
    • 1997
  • The dynamic equations for an arbitrary cluster comprising rigid spheres or assemblies of spheres (subclusters) encountered in granular-type systems are considered. The system is treated within the framework of multibody dynamics. It is shown that for an arbitrary cluster topology the governing equations can be given in an explicit scalar from. The derivation is based on the D'Alembert principle, on inertial coordinate system for each body and direct utilization of the path matrix describing the topology. The scalar form of the equations is important in computer simulations of flow of granular-type materials. An illustrative example of a three-body system is given.

ADAMS를 이용한 차량 조종안정성 해석 (An Analysis of Vehicle Handling Characteristics with ADAMS)

  • 조병관;송성재
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.109-118
    • /
    • 1996
  • An analysis of handling characteristics of a vehicle is performed for step and pulse steering input, which may be very useful in suspension design stage. Many developed computer programs for vehicle dynamics require test data of compliance effects for proto type car. Therefore, these programs are not suitable for automobile development stage. Using the raw design data of suspension and steering system, we analyze the vehicle behavior for step and pulse steering input with commercial multibody dynamics program, ADAMS. Simulated results are in good agreement with vehicle test results. Vehicle handling characteristics parameters which are very useful in automobile suspension design are evaluated from the analysis.

  • PDF

DADS를 이용한 초기 설계 단계에서의 경기용 차량의 핸들링 특성 해석 (Analysis of Race Car Handling Characteristics Using DADS in Initial Design Step)

  • 장운근
    • 한국산업융합학회 논문집
    • /
    • 제11권2호
    • /
    • pp.71-82
    • /
    • 2008
  • In this study, 3 dimensional non-linear race car vehicle model including Chassis, steering and suspension systems were modeled by using Multi-Body Dynamics Simulation Program, DADS 9.5(Dynamic Analysis and Design System),which was used in kinematic and dynamic analysis. A full race car vehicle dynamics model using DADS program was presented and analysis was carried out to estimate the handling characteristics that may be very useful to design a race car in early design stage. The simulation of vehicle handling behavior for step steering input was simulated and compared with different design parameters: torsional stiffness of the front and rear anti roll bars, the motion ratio of the front and rear suspension system, the location of the tie rod joint, in multibody dynamic model. Therefore this simulation model before race car construction in early design step will be helpful for race car designer to save time and limited budget.

  • PDF

현가장치 무질량 링크를 이용한 효율적인 차량동역학 모델 개발 (Development of an Efficient Vehicle Dynamics Model Using Massless Link of a Suspension)

  • 정홍규;김상섭
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.99-108
    • /
    • 2005
  • This paper represents an efficient modeling method of a suspension system for the vehicle dynamic simulation. The suspension links are modeled as composite joints. The motion of wheel is defined as relative one degree of freedom motion with respect to car body. The unique relative kinematic constraint formulation between the car body and wheel enables to derive equations of motion in terms of wheel vertical motion. Thus, vehicle model has ten degrees of freedom. By using velocity transformation method, the equations of motion of the vehicle is systematically derived without kinematic constraints. Various vehicle simulation such as J-turn, slowly increasing steer, sinusoidal sweep steer and bump run has been performed to verify the validity of the suggested vehicle model.

4원법과 유한요소를 이용한 유연체 동역학의 해석기법 (Dynamics Analysis for Flexible Systems using Finite Elements and Algebraic Quaternions)

  • 이동현;윤성호
    • 한국전산구조공학회논문집
    • /
    • 제18권2호
    • /
    • pp.141-149
    • /
    • 2005
  • 본 논문에서는 유연체 동역학해석을 위하여 유한회전을 표현하는데 있어, 4원법의 대수학적인 표현을 도입하여 운동방정식이 에너지보존 조건을 만족하도록 이산화된 에너지 평형식으로 정식화되었다. 여기서 사용된 유한회전의 4원법은 로드리게스 매개변수를 이용하도록 하였으며, 구속력에 대한 일이 제거되도록 하였다. 수치해석의 예를 통하여 제안된 방법이 사다리꼴 방법과 비교할 때 비선형 문제에서도 무조건적으로 안정조건을 보장함을 검증하였으며, 향후 유연한 관절로 연결된 3차원 유연다물체에 대한 동역학 해석을 확장할 수 있는 토대를 마련하였다.

차량 부품의 내구성 평가를 위한 가상시험실 구축 (The Durability Performance Evaluation of Automotive Components in the Virtual Testing Laboratory)

  • 김기훈;강우종;김대성;고웅희;임재용
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.68-74
    • /
    • 2006
  • The evaluation of durability performance in Virtual Testing Laboratory(VTL) is a new concept of vehicle design, which can reduce the automotive design period and cost. In this study, the multibody dynamics model of a car is built with a reverse engineering design. Hard points and masses of components are measured by a surface scanning device and imported into CAD system. In order to simulate the non-linear dynamic behavior of force elements such as dampers and bushes, components and materials are tested with specialized test equipments. An optimized numerical model for the damping behavior is used and the hysteresis of bush rubber is considered in the simulation. Loads of components are calculated in VTL and used in the evaluation of durability performance. In order to verify simulation results, loads of components in the vehicle are measured and durability tests are performed.

정전력 구동기의 동특성 해석 (A Study on Dynamic Analysis of the Electrostatic Actuator)

  • 이상규;김지남;문원규;최진환;박일한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.686-689
    • /
    • 2005
  • A numerical simulation method is developed to analyze the dynamic response of a cantilever switch, which is driven by electrostatic force and a basic component of electro-mechanical coupled system. First, point-charges model on conductor is proposed as a lumped parameter of electrical part. Then, this model is easily incorporated into a multi-body dynamics analysis algorithm, the generalized recursive dynamics formula previously developed by our research group. The resulting motion of a coupled overall system is formulated as a differential algebraic equation form including electrical and mechanical variables together. The equation is simultaneously solved in every time step. To implement this approach into the useful dynamics analysis tool, we used multibody dynamics software (RecurDyn) based on the generalized recursive formula using relative coordinate. The developed numerical simulation tool is evaluated by applying to many different driving condition and switch configuration. The final analysis model will be added to RecurDyn as a basic module for dynamics analysis of electro-mechanical coupled system.

  • PDF

수정된 속도변환기법과 독립좌표를 사용한 효율적인 다물체 동역학 알고리즘 (An Efficient Multibody Dynamic Algorithm Using Independent Coordinates Set and Modified Velocity Transformation Method)

  • 강신길;윤용산
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.488-494
    • /
    • 2001
  • Many literatures, so far, have concentrated on approaches employing dependent coordinates set resulting in computational burden of constraint forces, which is needless in many cases. Some researchers developed methods to remove or calculate it efficiently. But systematic generation of the motion equation using independent coordinates set by Kane's equation is possible for any closed loop system. Independent velocity transformation method builds the smallest size of motion equation, but needs practically more complicated code implementation. In this study, dependent velocity matrix is systematically transformed into independent one using dependent-independent transformation matrix of each body group, and then motion equation free of constraint force is constructed. This method is compared with the other approach by counting the number of multiplications for car model with 15 d.o.f..

  • PDF

차량동역학 해석 프로그램 AutoDyn7의 개발(∥) - 전처리 및 후처리 프로그램 (Developemtn of Vehicle Dynamics Program AutoDyn7(II) - Pre-Processor and Post-Processor)

  • 한종규;김두현;김성수;유완석;김상섭
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.190-197
    • /
    • 2000
  • A graphic vehicle modeling pre-processing program and a visualization post-processing program have been developed for AutoDyn7, which is a special program for vehicle dynamics. The Rapid-App for GUI(Graphic User Interface) builder and the Open Inventor for 3D graphic library have been employed to develop these programs in Silicon Graphics workstation. A Graphic User Interface program integrates vehicle modeling pre-processor, AutoDyn7 analysis processor, and visualization post-processor. In vehicle modeling pre-processor, vehicle hard point data for a suspension model are automatically converted into multibody vehicle system data. An interactive graphics capabilities provides suspension modeling aides to verify user input data interactively. In visualization post-processor, vehicle virtual test simulation results are animated with virtual testing environments.

  • PDF

Dynamic Analysis of a Moving Vehicle on Flexible Beam structures ( I ) : General Approach

  • Park, Tae-Won;Park, Chan-Jong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.54-63
    • /
    • 2002
  • In recent years, mechanical systems such as high speed vehicles and railway trains moving on elastic beam structures have become a very important issue to consider. In this paper, a general approach, which can predict the dynamic behavior of a constrained mechanical system moving on a flexible beam structure, is proposed. Various supporting conditions for the foundation support are considered for the elastic beam structure. The elastic structure is assumed to be a non-uniform and linear Bernoulli-Euler beam with a proportional damping effect. Combined differential-algebraic equation of motion is derived using the multi-body dynamics theory and the finite element method. The proposed equations of motion can be solved numerically using the generalized coordinate partitioning method and predictor-corrector algorithm, which is an implicit multi-step integration method.