• Title/Summary/Keyword: Multiband Antenna

Search Result 53, Processing Time 0.017 seconds

Designing a Wideband Antenna Using Diplexer Matching Network for Tactical Vehicles (다이플렉서 정합구조를 이용한 전술차량형 광대역 안테나 설계)

  • Cho, Ji-Haeng;Dong, Moon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.9
    • /
    • pp.661-667
    • /
    • 2018
  • Tactical communication radio systems that employ software defined radios(SDRs) have been developed for achieving high-speed data transmissions and voice communications. Such systems possess multiband and multichannel features, and can potentially replace several existing radio systems. This paper proposes a design for wideband antennas by incorporating a diplexer matching network for tactical vehicles. The proposed antenna design includes two radiators(upper and lower) and a diplexer matching network connected to the end of the feed line such that the LC matching networks are interleaved in the lower radiator and spring mount. By employing the diplexer matching network, the designed antenna can perform wideband impedance matching for the fifty ohm feed line. The designed LC networks aid in varying the effective electrical length of the antenna according to the operation frequency. The primary objective behind adjusting the electrical length is to vary the current distribution above and below the LC networks. The proposed antenna was fabricated and tested in an open site. The obtained evaluation results show that the designed antenna can achieve a relative bandwidth of 190% with a VSWR value of 3.5:1, and can attain good antenna gains over VHF and UHF bands.

A Study on Multi-band Antenna for Mobile using Coupling Feeding (커플링 급전을 이용한 모바일용 다중대역 안테나에 관한 연구)

  • WANG, Cheng;YOON, In-seop;HWANG, Sun-gook;YAN, Xiao-jia;PARK, Hyo-Dal
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.4
    • /
    • pp.188-194
    • /
    • 2014
  • In this paper, an antenna which has quad band in LTE (0.746 ~ 0.798 GHz), GSM(0.824 ~ 0.960 GHz), DCS(1.71 ~ 1.88 GHz), WCDMA(1.91 ~ 2.17 GHz) is proposed. An antenna size is $122mm{\times}50mm{\times}0.8mm$ on FR4(${\epsilon}_r=4.4$) ground substrate. In the proposed antenna, branch line is applied to the conventional PIFA architecture to achieve multi-bandwidth. Coupling power supply is applied for a wide bandwidth. Result of the measurement is as follows. When the low frequency, the antenna presents gain of 0.93 ~ 1.92dBi, and radiation efficiency of 49.60 ~ 76.35 %, and When the high frequency, gain is 2.19 ~ 4.66dBi, and radiation efficiency is 60.40 ~ 80.01 %, and with a VSWR < 2 (${\leq}-10dB$)measurement results for standard satisfies all band. Judging from the result, proposed multiband antenna is expected to be applied. B4G mobile terminals since the antenna shows an outstanding performance.

Design and Fabrication of Modified Monopole Antenna for Wireless USB Dongle with WLAN system Applications (WLAN 시스템 적용 가능한 무선 USB 동글용 변형된 모노폴 안테나의 설계 및 제작)

  • Lee, Yeong-Seong;Mun, Seung-Min;Kim, Gi-Rae;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2223-2231
    • /
    • 2015
  • In this paper, we propose a built-in antenna for wireless USB dongle which has a modified structure from the existing planar monopole antenna. The proposed antenna implemented a dual-band characteristic by inserting Strip1, Strip2, Strip3 into the monopole structure combined with 'n' shape and feeded 50-Ω using coaxial cable. The antenna is designed on an FR-4 substrate of which the dielectric constant is 4.6, and its overall size is 10 mm × 50 mm × 1mm. Based on the measurement results of the return loss, it was confirmed to satisfy the dual band resonance characteristics of 740 MHz (2.3 ~ 2.7 GHz) and 1,200 MHz (5.15 ~ 5.825 GHz) by -10 dB. In addition, we obtain the omni-directional radiation pattern measurements in the operating frequency bands, and the maximum gain of the proposed antenna has 2.26~3.81 dBi in the 2.4 GHz band and 2.21~5.79 dBi. in the 5.5 GHz band, respectively.