This paper presents a new modified Contract Net Protocol (CNP) for microgrid operation based on multiagent system. The CNP is a widely used protocol for interactions among distributed problem solving. The Contract Net Interaction Protocol of the Foundation for Intelligent Physical Agents (FIPA-CNIP) is a minor modification of the original CNP for multiagent system applications. In this paper, a modified CNP (MCNP) based on the FIPA-CNIP is proposed for more specialized interactions among agents for microgrid operation. A multiagent system is designed and constructed for microgrid operation. A microgrid operation based on the multiagent system is tested to check the functionality of the proposed MCNP.
This paper presents a multiagent system for microgrid operation in the grid-interconnected mode. An energy market environment with generation competition is adopted for microgrid operation in order to guarantee autonomous participation and meet the requirements of participants in the microgrid. The modified Contract Net Protocol (CNP) is used as a protocol for interactions among agents. The multiagent system for microgrid operation based on the modified CNP and the energy market environment is designed and implemented. To verify the feasibility of the suggested multiagent system, experiments on three operation conditions are carried out.
The purpose of this paper is to propose the modeling of multiagent based SCM and implement the prototype in the Internet environment. SCM process follows the supply chain operations reference (SCOR) model which has been suggested by Supply Chain Counsil. SCOR model has been positioned to become the industry standard for describing and improving operational process in SCM. Five basic processes, plan, source, matte, deliver and return are defined in the SCOR model, through which a company establishes its supply chain competitive objectives. A supply chain is a world wide network of suppliers, factories, warehouses, distribution centers and retailers through which raw materials are acquired, transformed or manufactured and delivered to customers by autonomous or semiautonomous process. With the pressure from the higher standard of customer compliance, a frequent model change, product complexity and globalization, the combination of supply chain process with an advanced infrastructure in terms of multiagent systems have been highly required. Since SCM is fundamentally concerned with coherence among multiple decision makers, a multiagent framework based on explicit communication between constituent agents such as suppliers, manufacturers, and distributors is a natural choice. Multiagent framework is defined to perform different activities within a supply chain. Dynamic and changing functions of supply chain can be dealt with multi-agent by cooperating with other agents. In the areas of inventory management, remote diagnostics, communications with field workers, order fulfillment including tracking and monitoring, stock visibility, real-time shop floor data collection, asset tracking and warehousing, customer-centric supply chain can be applied and implemented utilizing multiagent. In this paper, for the order processing event between the buyer and seller relationship, multiagent were defined corresponding to the SCOR process. A prototype system was developed and implemented on the actual TCP/IP environment for the purchase order processing event. The implementation result assures that multiagent based SCM enhances the speed, visibility, proactiveness and responsiveness of activities in the supply chain.
Task allocation is a key problem in multiagent systems. The importance of automated negotiation protocols for solving the task allocation problem is increasing as a consequence of increased multi-agent applications. In this paper, we introduce the multiagent Traveling Salesman Problem(TSP) as an example of task reallocation problem, and suggest Vickery auction as an inter-agent coordination mechanism for solving this problem. In order to apply this market-based coordination mechanism into multiagent TSPs, we define the profit of each agent, the ultimate goal of negotiation, cities to be traded out through auctions, the bidding strategy, and the order of auctions. The primary advantage of such approach is that it can find an optimal task allocation ...
This paper presents a load-shedding scheme using the Talmud rule in islanded microgrid operation based on a multiagent system. Load shedding is an intentional load reduction to meet a power balance between supply and demand when supply shortages occur. The Talmud rule originating from the Talmud literature has been used in bankruptcy problems of finance, economics, and communications. This paper approaches the load-shedding problem as a bankruptcy problem. A load-shedding scheme is mathematically expressed based on the Talmud rule. For experiment of this approach, a multiagent system is constructed to operate test islanded microgrids autonomously. The suggested load-shedding scheme is tested on the test islanded microgrids based on the multiagent system. Results of the tests are discussed.
An important issue in Multiagent reinforcement learning is how an agent should learn its optimal policy in a dynamic environment where there exist other agents able to influence its own performance. Most previous works for Multiagent reinforcement learning tend to apply single-agent reinforcement learning techniques without any extensions or require some unrealistic assumptions even though they use explicit models of other agents. In this paper, a Naive Bayesian based policy model of the opponent agent is introduced and then the Multiagent reinforcement learning method using this model is explained. Unlike previous works, the proposed Multiagent reinforcement learning method utilizes the Naive Bayesian based policy model, not the Q function model of the opponent agent. Moreover, this learning method can improve learning efficiency by using a simpler one than other richer but time-consuming policy models such as Finite State Machines(FSM) and Markov chains. In this paper, the Cat and Mouse game is introduced as an adversarial Multiagent environment. And then effectiveness of the proposed Naive Bayesian based policy model is analyzed through experiments using this game as test-bed.
An important issue in multiagent reinforcement learning is how an agent should team its optimal policy through trial-and-error interactions in a dynamic environment where there exist other agents able to influence its own performance. Most previous works for multiagent reinforcement teaming tend to apply single-agent reinforcement learning techniques without any extensions or are based upon some unrealistic assumptions even though they build and use explicit models of other agents. In this paper, basic concepts that constitute the common foundation of multiagent reinforcement learning techniques are first formulated, and then, based on these concepts, previous works are compared in terms of characteristics and limitations. After that, a policy model of the opponent agent and a new multiagent reinforcement learning method using this model are introduced. Unlike previous works, the proposed multiagent reinforcement learning method utilize a policy model instead of the Q function model of the opponent agent. Moreover, this learning method can improve learning efficiency by using a simpler one than other richer but time-consuming policy models such as Finite State Machines(FSM) and Markov chains. In this paper. the Cat and Mouse game is introduced as an adversarial multiagent environment. And effectiveness of the proposed multiagent reinforcement learning method is analyzed through experiments using this game as testbed.
The Transactions of the Korea Information Processing Society
/
v.3
no.7
/
pp.1803-1811
/
1996
In a distributed multiagent framework, the capabilities of each agent are known to other agents. Namely, each agent in a multiagent society is aware of what agents are available in the whole society, which is able to solve a query, and how to contact them. This characteristic leads to the simplicity in controling both local and remote interactions among agents by using a fixed form for communication packes. This paper presents methods for controlling interactions among agents in this distributed multiagent frame-work. Agent interactions are described within the platform of MASCOT that is a tightly coupled multiagent system developed for the role of a computer secretary. A frame-like form of a commumication packet is defined, and protocols for message exchanges are presented. Also, ascenarios given to demonstrate how the communication mechanism controls agent intercations in MASCOT.
Journal of Korean Society of Industrial and Systems Engineering
/
v.32
no.1
/
pp.72-78
/
2009
This paper considers a multiagent scheduling problem under public information where a machine is shared by multiple agents. Each agent has a local objective among the minimization of total completion time and the minimization of maximum. In this problem, it is assumed that scheduling information is public. Therefore an agent can access to complete information of other agents and pursue efficient schedules in a centralized manner. We propose an enumeration scheme to find Pareto optimal schedules and a multiobjective genetic algorithm as a heuristic approach. Experimental results indicate that the proposed genetic algorithm yields close-to Pareto optimal solution under a variety of experimental conditions.
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
/
v.23
no.11
/
pp.34-43
/
2009
SCADA (Supervisory Control and Data Acquisition) system has been used for remote measurement and control on the critical infrastructures as well as modem industrial facilities. As cyber attacks increase on communication networks, SCADA network has been also exposed to cyber security problems. Especially, SCADA systems of energy industry such as electric power, gas and oil are vulnerable to targeted cyber attack and terrorism Recently, many research efforts to solve the problems have made progress on SCADA network security. In this paper, flexible key distribution concept is proposed for improving the security of SCADA network using Multiagent System (MAS).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.