=4 HEJNIOITE AlAge] M= M0 1803

B2 de]d oA E Alagle] A3y E Ao

2 of

2% FAY FY2 st Az AUFHA FHe B4 DR AE AR 2 oA JEd
e ol AESA Aesejzcl dr}. F, DEOIAE A8 &M & |AEE oY FE S|IEE
o] ALE 7Fe@A, 25| oW AL A7Y 4 g, 2E 28 PRE T2 4 YL g
wo] glizx) G glelof Gt oA 5L TF A FHEL AW AoAEST AHY B FAA Y
89 AolE7] g5l de|AEE T4 4L 278

B =EoAE A5 vz Add 24 9Hd A E /TR MASCOT E4F 34 «AES
r2] AP ES Aelsy) A% 714 A YL olE ote] Xl W] T4 AAE A slon, dA
A AE8e 9@ T2 EEe ANtk £8, MASCOT 4949 doldBge] 43P A&7 A8
4 g 498 6 st AvEled AN

Interaction Control in a Distributed Multiagent System

Soon-Cheol Baeg ' - Joong-Min Choi ' « Young-Hwan Lim ™" - Myeong-Wuk Jang """ -
Sang-Kyu Park """ - Gowang-Lo Lee '

ABSTRACT

In a distributed multiagent framework, the capabilities of each agent arc known to other agents. Namely, each
agent in a multiagent society is aware of what agents are available in the whole society, which is able to solve a
query, and how to contact them. This characteristic leads to the simplicity in controlling both local and remote
interactions among agents by using a fixed form for communication packets.

This paper presents methods for controlling interactions among agents in this distributed multiagent frame-
work. Agent interactions are described within the platform of MASCOT that is a tightly coupled multiagent sys-
tem developed for the role of a computer secretary. A frame-like form of a communication packet is defined,
and protocols for message exchanges are presented. Also, a scenario is given to demonstrate how the communi-
cation mechanism controls agent interactions in MASCOT.

1. Introduction Controlling interactions among agents in a distributed
multiagent framework has been a challenging issue

[4, 6, 7, 10]. The types of interactions include

T4 8 :4FAAFNET2: AFTAETY requesting jobs, replying with answers, reporting control
H g Aﬁﬂggg:\q 3%_ %ggggz} information such as activation status or error messages,

=EA:1995d 84 189, AAMEE:1996 34 309 and so on. The control of agent interactions is a difficult

1804 siRFRA o8 S =27 HaH ®[75(96.12)

task mainly because agents are normally heterogencous
and lack the knowledge about other agents. In this
loosely coupled system, approaches for controlling
agent interactions have been focusing on developing
mechanisms for determining who can solve which
task. Efforts for standardizing inter-agent communi-
cation languages such as KQML belong to this
category[3, 4]. Another difficulty lies in the manage-
ment of common ontology for vocabularies that are
exchanged among agents. Namely, it is possible that
the same word means different things (ambiguity), or
different words mean the same thing in different
agents (confliets) among different agents[5].

Compared to this, this paper presents a mechanism
for controlling interactions among agents in a tightly
coupled system. In this system, an agent is aware of
what agents are available, which is able to solve a
query, and how to contact them, albeit the heterogen-
eity still remains. Typically, a tightly coupled multiagent
system is built in a top-down manner by disassembling
a monolithic agent into a set of task-specific agents.
In contrast, a loosely coupled system is the bottom-up
integration of separate agents which already exist or
are newly built[7]).

The main characteristic in the tightly coupled
multiagent system is the simplicity and efficiency in
the control of both local and remote interactions
among agents. The form of the communication
packet used in information exchange is predetermined
and transparent to all agents. The communication
packet includes the control part that specifies the
sender, the receiver, and the type of the message, and
the data part that specifies the action and the content,
Although a simple point-to-point protocol might be
adopted for this framework, it has a disadvantage
that the communication module of each agent ought
to take care of synchronization of asynchronously
incoming messages. Hence, we employ a coordinator
called the root agent whose responsibility is to collect
communication messages, check the availability of

recelving agents, and rounte each message to them.

Consequently, the communication module of an agent
is simplified since the root agent prevent each agent
from receiving any message while it is busy performing
other task.

In this paper, we present MASCOT (Multi Agent
System for COmputer secreTary) which is a tightly
coupled multiagent system developed for the role of a
computer secretary. The task of a computer secretary
is divided into a number of sub-secretaries or
sub-agents, namely, the scheduling agent, the mail
agent, the phone agent, and so on, and each agent
knows what other agenfs are able to perform for
cooperative jobs. We especially focus on its capability
on controlling interaction among agents. Other issues
including the intelligent user interface are described in
8].

This paper is organized as follows. Section 2
describes the architecture of MASCOT with the
description of the root and some application agents.
Section 3 presents the data structures and protocols
for controlling interactions in MASCOT. Section 4
provides a typical scenario and describes it in terms
of MASCOT agent interactions. Section 5 concludes
with a summary and future directions.

2. System Architecture of MASCOT

MASCOT is a multiagent system developed for the
role of a computer secretary. Examples of the capa-
bilities of MASCOT are:1) handling daily mundane
activities such as setting up individual or group
meetings, 2) presenting summarized information about
newspaper articles or stock trends, 3) reads and
replies to electronic mails, 4) keeping track of the cur-
renf whereabouts of the user to forward wurgent
messages. To achieve these tasks, MASCOT manages
several application agents, and we describe three of
them here-the schedule agent, the mail agent, and the
phone agent. Inferactions among these agents are
controlled by the root agent. The system architecture
of MASCOT is shown in Fig. 1.

networked to
other MASCOT

schadula
agent application

agents

{Fig- 1) MASCOT architecture

An application agent may have its own interface so
that the user can issue a query to the application
agent directly. Note that the user can also ask a query
to the root agent that interprets it and delivers a
mission to the proper agent. Fig. 2 shows the functional
structure of a typical application agent consisting of
the user interface, the interpretation module, the com-
munication module, the message handler, and the
task performer. The interpretation module analyzes a
user request directly asked through the user interface
in a restricted natural language style or in a frame-based
form. The communication module receives and sends
communication messages. Note that the communi-
cation module of an application agent does not main-
tain a message quene. This is because the root agent
takes care of the synchronization of several messages
to the same application agent, and as a result, does
not send a message to an application agent when it is
busy. The message handler is responsible for interpreting

message han

I network

-(Fig- 2) Functional modules of an application agent

ZL LEIOIOIHE AlARO| AT 0] 1805

incoming communication messages and building out-
going messages. The task performer is the core mod-
ule that executes domain specific tasks according to
the input provided by the interpretation module and
the message handler.

2.1 Application Agents

A few application agents are implemented in MAS-
COT, and three of them are explained here.

The schedule agent (SA) manages individual schedules,
handles group schedules such as team meetings or
seminars, detects and resolves time conflicts with
existing schedules, and provides automatic scheduling
by finding free slots in the user-preferred time zomne
like the mornings or business hours[1]. The user can
issue a command to SA in a restricted natural
langnage style such as “get me all schedules about
{meeting] this week”. In handling group schedules in
particular, SA interacts with a remote SA in other
MASCOT to decide whether it should set up a meet-
ing as specified, reschedule it, or reject it. Note that
the decision is made depending on some heuristic
information including 1) the number of available
members for the meeting, 2) the authority level of
each member, and 3) the importance of the meeting
itself.

The mail agent (MA) is needed when the user
wants to perform some actions for specific mail
messages. To do this, the user can specify monitoring
conditions in terms of the sender, the subject, and the
arrival time of incoming mails, and register them to
MA._ Each monitoring condition is associated with an
action. Implemented actions include forwarding,
deleting, printing, alarming, and reading.

MA monitors the arrival of a new mail and, if any
of the monitoring conditions is satisfied for the new
mail, it performs the associated action. Especially for
the forwarding action, MA interacts with SA to know
where the user currently is, and also with PA to for-
ward the message to the user by phone.

The phone agent (PA) makes phoue calls, checks

1806 T=FEMEIER =X M3 M| 722(96.12)

the pre-defined password to identify the correct
recipient, and delivers a given message to the recipi-
ent. The voice synthesizer converts a text message
into voice before sending. PA is normally given a
number to call, but when the number is not specified,
PA refers its phone directory to find out the phone
number of a person or a place.

All agent interactions are performed by message
exchanges among agents. The root agent serves as a
router for these communication messages. In other
words, all messages are first sent to the root agent
even though the destination is known at the time of
sending. Then, the root agent relays it to the desti-
nation apgent. By this coordination, the communi-
cation module of an application agent is simplified,
since the root agent is responsible for synchronizing
the processing of several messages going to the same
application agent.

The root agent is also responsible for activating
and deactivating application agents. Initially, only the
root agent is rumning, and the application agents
become activated as needed by the control of the root
agent. This scheme is especially effective in an
environment with limited resources since all appli-
cation agents need not be running all the time as sep-

arate processes.
3. Controlling Agent Interactions

3.1 Communication Packets

A communication packet has a frame-like form
with attribute-value pairs, and consists of the follow-
ing fields:FromAgent, FromHost, ToAgent, ToHost,
MsgType, Action, and Content. FromAgent specifies
the sending agent. FromHost is the symbolic host
name on which FromAgent is operating. ToAgent
specifies the receiving agent. ToHost is the symbolic
host name on which ToAgent is operating. MsgType
distinguishes whether the type of message is a query
or a reply. Action specifies the action to be performed
by ToAgent. Finally, Content is the data needed to

perform the specified action,

For example, when Hana wants o set up a meeting
with Duri, Hana’s SA constructs and sends packetl
to the root agent by which it is relayed to Duri’s SA.
Here, sched1 denotes the actual schedule object, not a
pointer, that is passed to Duri’s SA. Another example
is when MA asks SA to obtain the user’s location,
denoted by packet?.

packet{
FromAgent : SCHED
FromHost : Hana
ToAgent : SCHED
ToHost ; Duri
MsgType : Query
Action : RegisterSched
Content : sched{

packet2
FromAgent : MAIL
FromHost ; Hana
ToAgent ; SCHED
ToHost : Hana
MsgType : Query
Action : Gellocation
Content :

The main feature in this form of communication
packets is that the destination agent is predetermined.
This is possible since in a tightly coupled system an
agent knows which agent is responsible for the speci-
fied action. Without the need for determining the des-
tination, this leads to a simple communication mod-
ule in both the root agent and the application agents.
The data structure for the Content field is not fixed,
and is dependent upon the type of action specified in
the Action ficld. For example, it can be a schedule
instantiation for the RegisterSched action, but it can

be just a siring for the reply of the GerlLocation

action.

3.2 Message Exchange Protocol

For the exchange of communication messages, a
communication module (CM) is managed by the root
agent and each of the application agents. Since all
communication messages are routed via the root
agent, CM of each application agent sends all outgo-
ing packets to the root agent regardless of the final
destination. CM of the root agent relays incoming
messages in two ways by examining the ToHost field
of the communication packet. If ToHost is the same
as the local host, the root agent sends the packet to
ToAgent in the local MASCOT. If ToHost is a
remote host, the root agent sends the packet to the
root agent of MASCOT running on ToHest. Upon
receiving a packet from a remote root agent, CM of
the root agent sends it to the agent specified as
ToAgent. When CM of the application agent receives
the packet from its root agent, it checks Action and
MsgType and execules an appropriate routine for
which Content serves as the data. The protocol of
message routing in the CM of the root agent is
represented by a pseudo code in Fig. 3.

// ‘packet’ is a variable that holds the packet data
// sent from an application agent to the root agent

// ‘send_packet (p, a, h)" is a function that sends a
// packet ‘p’ to the agent ‘a’ in the host machine ‘h’
// “LocalHost" holds the name of the local host machine

If packet. ToHost = LocalHost
then send_packet(packet, packet. ToAgent,
LocalHost)
else send_packet(packet, ‘ROOT’, packet.
ToHost)

(Fig. 3) Message routing protocol of the root agent

-It is possible that an agent can send the same

=4 ZEOIOITE AlAL0] AEia! HO] 1807

packet to several agents. For example, if a person
needs to make a group meeting with three people, the
SA of that person would send a requesting packet
three times to the SA of each person who participates
in the meeting. Since a group schedule can be made
only when all participants have confirmed. a counter
should be maintained in the sending agent.

Since the agents are running asynchronously, the
coordination of communication messages is needed
when several communication messages are sent back
and forth among application agents. For this pur-
pose, the root agent keeps track of the activation
status of the application agents. There are threc types
of activation status for an agent:EXIT, READY,
and BUSY. EXIT denotes that the agent is not
activated or initiated, READY denotes that the agent
is initiated but is currently idle, and BUSY denotes
that it is activated and currently processing a job.
Initially, alt application agents have the EXIT status.
When an application is needed to be activated, the
root invokes it, changes its status to READY by
sending a control communication message to the
application agent. An agent with the READY status
can process the message from the root or other
agents. If an-application agent wants to communicate
with other application agent that is currently BUSY,
the root agent puts the message in a message quene
that will be dispatched and sent to the destination
agent as soon as the status is changed to READY.

The message exchange protocol described above is
illustrated by an example. Suppose Hana wants fo set
up a group schedule with Duri. Two actions are
involved in this task:CheckSched for checking time
conflicts with existing schedules, and RegisterSched
for actually adding the new schedule to the schedule
DB. First, Hana's SA sends a CheckSched message to
Duri’s SA through the root agent. Then, Duri’s SA
acknowledges back by saying that there are no conflicts.
Now, Hanas SA sends a RegisterSched message to
Duri’s SA. Duri’s SA then adds the new schedule to
the schedule DB and acknowledges that the new

1808 BRHTHMEIEE =FX M3 M 7=(96.12)

schedule is successfully added. Fig. 4 (a) and (b)
shows the flow of message exchanges for CheckSched
and RegisterSched actions, respectively, with the

description of actual messages.

Duri

schedule
agent

*

FromAgent: SCHED
FromHost : Hana
ToAgent : SCHED
ToHest © Durl

Type
AM:gox Chec:gched
Content : sched1

fFromAgent : SCHED

FromHost = Duri
ToAgent ; SCHED
ToHost © Hana
MsgType : Reply
Action : CheckSchaed
Content : No Conflict

— —

FromAgent: SCHED FrnmAgent SCHED
FromHost : Hana FromHost : Duri
ToAgent : SCHED ToAgent - SCHED
ToHost : Dur ToHost Hana

4

MsgType : Query R | MsgTypo

H PoqtsterS:hed
C:mlant Success

(Fig. 4) Message exchanges for setting up a new group
schedule

4. Interactions in the Scenario

In this section, we present a typical scenario that
involves a number of local and remote agent inte-
ractions.

“Hana, Duri and Sena are managers in a company.
Hapa wants to have a business meeting with Duri at
3 in the afternoon. Hana asks his secretary SecA to
contact with Duri’s secretary SecB whether Duri is
free at 3. SecB confirms that Duri is free then and

both secretaries put a new schedule “business mect-
ing-Hana with Duri” in the 3 PM slot. At 2 PM,
Hana informs SecA that he will be at Sena’s office
and be back by 3 for the meeting with Duri. At 2:30,
the president of the company calls Duri that they
should meet at 3. Since it has a higher priority, Duri
asks SecB to cancel the meeting with Hana. Now,
SecB informs SecA of this situation, and SecA looks
up the telephome number of Sena’s office in the
phone directory, calls the number, and tells Hana that
the meeting is canceled so he doesnt have to be back
by 3. Hana confirms and continues to work with
Sena.”

We can describe this scenario with a sequence of
interactions performed by the application agents in
MASCOT. For each step, the information about the
action and the message type is described in a parenth-

esis.

1. To set up a meeting with Duri, Hana’s SA sends
a message to Duri’s SA to check if Dur is avail-
able at 3PM. (CheckSched Query)

2. Duri’s SA replies to Hana’s SA that Duri is free
at that time. (CheckSched Reply)

3. Hana’s SA sends a message again to Duri’s SA
fo put a new schedule fitled “business meeting
(Hana and Duri)” to the 3 PM slot. {RegisterSched
Query)

4. Duri's SA changes its schedule DB and
acknowledges to Hana’s SA. (RegisterSched
Reply)

5. Hana adds a new schedule to SA that he will be
in Sena’s office until 3.

6. Hana stores a monitoring condition to MA by
expressing forward [urgent] mails to me.

7. Since Duri has to attend a more important meet-
ing, Duri sends an email to Hana with the sub-
ject urgent situation saying that he can’t make
the meeting.

8. Hana’s MA recognizes that the arrived mail

matches the monitoring condition for forwarding

by comparing the subject part of the mail with
monitoring conditions.

9. Hana’s MA asks its SA to get the current where-

abouts of Hana. (GetLocation Query)

10. Hana's SA replies with the information that he
is in Sena’s office. (GetLocation Reply)

11. Hana’s MA asks PA to deliver Duri’s message
to Hana. (ForwardMsg Query).

12. Hanas PA calls at Sena’s_office, checks the
password to make sure Hana picked up the
phone, and replays the mail message by voice
synthesis. After calling, PA replies to MA that it
successfully forwarded the message. (ForwardMsg
Reply)

Fig. 5 shows the flow of message exchanges for this
scenario. In this figure, each number denotes the se-
quence of actions and message flows as described in

the above scenario.

(Fig. 5) Message exchange flows for the scenario

5. Conclusion

We have presented a message-based communication
method for interactions among agents in a distributed
multiagent framework in which the capabilities of
agents are known to other agents. This approach
leads to the simplicity in controlling both local and
remote agent interactions using a fixed form for com-
munication packets. However, it has difficulties in
¢xchanging messages with other loosely coupled

o HEIMOIFE AlA%I0| AlSEE MO 1809

systems, and we are currently working on building a
multiagent framework based on an open agent archi-
tecture[2] to overcome this drawback and support
more heterogencity and openness.

Another topic we are also interested in is the separ-
ation of the user interface from the agent core engine
to facilitate a portable agent system installed in a
small computer such as a notebook or a PDA.. This
topic produce many intersesting issues in the control
of interactions between the user interface that has a
minimal processing overhead focusing on the display
and the remotely-running agent core that is actually
hidden from the user but performs most operational
tasks[9].

REFERENCES

(1] Joongmin Choi and Sang-Kyu Park, “An
Agent-based Automatic Schedule Management
System (in Korean),” Proceedings of the 2lIst
Korean Information Science Society Fall Confer-
ence, Seoul, Korea, pp. 715-718, 1994,

[2] Philip R. Cohen, Adam Cheyer, Michelle Wang,
and Soon Cheol Baeg, “An Open Agent Architec-
ture,” Working Notes of AAAI Spring Sym-
posium on Software Agents, pp. 1-8, 1994,

[3] Tim Finin, Richard Fritzson, Don McKay, and
Robin McEntire, “KQML as an agent communi-
cation language,” Proceedings of CIKM’94, The
ACM Press, 1994,

[4] Michael R. Genesereth, “An Agent-based Approach
to Software Interoperability,” Technical Report
Logic-91-6, Logic Group, CSD, Stanford Univer-
sity, 1993.

[5] Thomas R. Gruber, “Ontolingua: A Mechanism
to Support Portable Ontologies,” Technical Report
KSL 91-66, Knowledge Systems Laboratory,
Stanford University, 1992.

(6] R. V. Guha and Douglas B. Lenat, “Enabling
Agents to Work Together,” Communications of
ACM, vol. 37, no. 7, pp 127-142, 1994.

1840 SIRMBHRISE =EX M3 X 7=06.12)

(71 Henry A. Kautz, Bart Selman, and Michael
Coen, “Bottom-up Design of Software Agents,”
Communications of ACM, vol. 37, no. 7, pp.
143-146, 1994.

8] Sang-Kyu Park, Gowang-Lo Lee, Joongmin
Choi, Myeong-Wuk Jang, Young-Hwan Lim,
Chee-Hang Park, and Ji-Young Choi, “An
Agent-based User Interface System (in Korean),”
Proceedings of UNIEXPO™94, Seoul, Korea, pp.
23-27, 1994.

[91 T. Rodden, P. Sawyer, and 1. Sommerville,
“Vista:A User Interface For a Distributed
Object-Oriented Software Engineering - Environ-
ment,” Software Engineering Journal, pp. 25-34,
1992,

[10] Eric Werner, “Cooperating Agents:A Unified
Theory of Communication and Social Structure,”
in Distributed Artificial Intelligence, vol 2, Les
Gasser and Michael N. Huhns (eds.), Pitman,
London, pp. 3-36, 1989.

oS

1990 madietE A=A
EHQEAD

19929 @3AR7| 4 ALY
= 44D

19923 ~FA #FAAFALT
2 AFAed+d €
T4

A gob:fojAE A4, dE g14]

z F 4

19343 Agoista FFEIE
= S4EAD

1986 A LoistE FHRETT
= U AD

1993\ State University of New
York at Buffalo, Com-
puter Science E4(EFAD

1993d~1995d FFAAETNATE AFAFTET

A xgda+4

19953~ ST AAAIEF =T

AN 2oL AFTAY, dolRE A29, A4 Y F

- B2

ur A 7

19829 A eitta ZTEFE
Z Z4EAD

19843 =Hsr) & A4g
5 2HEAD

19844 ~1987d it A
425

19890 3~#A dIAsrie A
Absta whala A

1987W~AA] FIHABAQTL UFAFATH

HAgazd
B B0k ofo|HAE A4, AR A, HCI

oz ®

19861 AAd st AxF
Z(8HAh

19883 Axdiga AA-E e
Z4(HAD

19883~ 4] FSAATAET
2 FANFAFE A
d4d74d

1993d—-199413 ©]= SRI International (International

Fellow)
FARoL:o]HE Al2H, FETF AR

o & =2

198613 Fukuoka %t AR}t
AAZET EAEAD

1988 Ritsumeikan ™39 F
712 EHEAD

1988 ~AA FFHAFTNDAT
& QFAFATL A
SEEE

199413 ~19951d]2 SRI International (International

Fellow)
BAEckioolAE AW, PEjvitie], A7
ol o S

19779 AEusE S 29
(&p

19799 #F#A8red ALH
= 4944

1985\ Northwestern)3t 24t
3 FL4AD

1979:3~1982d @FAA7|&d
F&AYATE

198311 ~1985% Argonne Lab. @74

1985\d~19961 FFHAFAGF4A FEUT]o]d

TR A9
199311~1994'd ©]= SRI International (International
Fellow)
19963 ~8A Sddstz JFEEY 25
FFok: gE U], do|HE A=

=
2t

oy

=

EICHOIRE AIARO| A&t

=

MO 1811

