• 제목/요약/키워드: MultiTask Learning

검색결과 139건 처리시간 0.034초

화자 인식을 위한 적대학습 기반 음성 분리 프레임워크에 대한 연구 (A study on speech disentanglement framework based on adversarial learning for speaker recognition)

  • 권유환;정수환;강홍구
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.447-453
    • /
    • 2020
  • 본 논문은 딥러닝 기법을 활용하여 음성신호로부터 효율적인 화자 벡터를 추출하는 시스템을 제안한다. 음성신호에는 발화내용, 감정, 배경잡음 등과 같이 화자의 특징과는 관련이 없는 정보들이 포함되어 있다는 점에 착안하여 제안 방법에서는 추출된 화자 벡터에 화자의 특징과 관련된 정보는 가능한 많이 포함되고, 그렇지 않은 비화자 정보는 최소화될 수 있도록 학습을 진행한다. 특히, 오토-인코더 구조의 부호화 기가 두 개의 임베딩 벡터를 추정하도록 하고, 효과적인 손실 함수 조건을 두어 각 임베딩이 화자 및 비화자 특징만 각각 포함할 수 있도록 하는 효과적인 화자 정보 분리(disentanglement)방법을 제안한다. 또한, 화자 정보를 유지하는데 도움이 되는 생성적 적대 신경망(Generative Adversarial Network, GAN)에서 활용되는 판별기 구조를 도입함으로써, 디코더의 성능을 향상시킴으로써 화자 인식 성능을 보다 향상시킨다. 제안된 방법에 대한 적절성과 효율성은 벤치마크 데이터로 사용되고 있는 Voxceleb1에 대한 동일오류율(Equal Error Rate, EER) 개선 실험을 통하여 규명하였다.

An Intelligent Game Theoretic Model With Machine Learning For Online Cybersecurity Risk Management

  • Alharbi, Talal
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.390-399
    • /
    • 2022
  • Cyber security and resilience are phrases that describe safeguards of ICTs (information and communication technologies) from cyber-attacks or mitigations of cyber event impacts. The sole purpose of Risk models are detections, analyses, and handling by considering all relevant perceptions of risks. The current research effort has resulted in the development of a new paradigm for safeguarding services offered online which can be utilized by both service providers and users. customers. However, rather of relying on detailed studies, this approach emphasizes task selection and execution that leads to successful risk treatment outcomes. Modelling intelligent CSGs (Cyber Security Games) using MLTs (machine learning techniques) was the focus of this research. By limiting mission risk, CSGs maximize ability of systems to operate unhindered in cyber environments. The suggested framework's main components are the Threat and Risk models. These models are tailored to meet the special characteristics of online services as well as the cyberspace environment. A risk management procedure is included in the framework. Risk scores are computed by combining probabilities of successful attacks with findings of impact models that predict cyber catastrophe consequences. To assess successful attacks, models emulating defense against threats can be used in topologies. CSGs consider widespread interconnectivity of cyber systems which forces defending all multi-step attack paths. In contrast, attackers just need one of the paths to succeed. CSGs are game-theoretic methods for identifying defense measures and reducing risks for systems and probe for maximum cyber risks using game formulations (MiniMax). To detect the impacts, the attacker player creates an attack tree for each state of the game using a modified Extreme Gradient Boosting Decision Tree (that sees numerous compromises ahead). Based on the findings, the proposed model has a high level of security for the web sources used in the experiment.

다종 장사정포 공격에 대한 강화학습 기반의 동적 무기할당 (Reinforcement Learning-based Dynamic Weapon Assignment to Multi-Caliber Long-Range Artillery Attacks)

  • 김현호;김정훈;공주회;경지훈
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.42-52
    • /
    • 2022
  • North Korea continues to upgrade and display its long-range rocket launchers to emphasize its military strength. Recently Republic of Korea kicked off the development of anti-artillery interception system similar to Israel's "Iron Dome", designed to protect against North Korea's arsenal of long-range rockets. The system may not work smoothly without the function assigning interceptors to incoming various-caliber artillery rockets. We view the assignment task as a dynamic weapon target assignment (DWTA) problem. DWTA is a multistage decision process in which decision in a stage affects decision processes and its results in the subsequent stages. We represent the DWTA problem as a Markov decision process (MDP). Distance from Seoul to North Korea's multiple rocket launchers positioned near the border, limits the processing time of the model solver within only a few second. It is impossible to compute the exact optimal solution within the allowed time interval due to the curse of dimensionality inherently in MDP model of practical DWTA problem. We apply two reinforcement-based algorithms to get the approximate solution of the MDP model within the time limit. To check the quality of the approximate solution, we adopt Shoot-Shoot-Look(SSL) policy as a baseline. Simulation results showed that both algorithms provide better solution than the solution from the baseline strategy.

Using Bayesian tree-based model integrated with genetic algorithm for streamflow forecasting in an urban basin

  • Nguyen, Duc Hai;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.140-140
    • /
    • 2021
  • Urban flood management is a crucial and challenging task, particularly in developed cities. Therefore, accurate prediction of urban flooding under heavy precipitation is critically important to address such a challenge. In recent years, machine learning techniques have received considerable attention for their strong learning ability and suitability for modeling complex and nonlinear hydrological processes. Moreover, a survey of the published literature finds that hybrid computational intelligent methods using nature-inspired algorithms have been increasingly employed to predict or simulate the streamflow with high reliability. The present study is aimed to propose a novel approach, an ensemble tree, Bayesian Additive Regression Trees (BART) model incorporating a nature-inspired algorithm to predict hourly multi-step ahead streamflow. For this reason, a hybrid intelligent model was developed, namely GA-BART, containing BART model integrating with Genetic algorithm (GA). The Jungrang urban basin located in Seoul, South Korea, was selected as a case study for the purpose. A database was established based on 39 heavy rainfall events during 2003 and 2020 that collected from the rain gauges and monitoring stations system in the basin. For the goal of this study, the different step ahead models will be developed based in the methods, including 1-hour, 2-hour, 3-hour, 4-hour, 5-hour, and 6-hour step ahead streamflow predictions. In addition, the comparison of the hybrid BART model with a baseline model such as super vector regression models is examined in this study. It is expected that the hybrid BART model has a robust performance and can be an optional choice in streamflow forecasting for urban basins.

  • PDF

드론 방제의 최적화를 위한 딥러닝 기반의 밀도맵 추정 (Density map estimation based on deep-learning for pest control drone optimization)

  • 성백겸;한웅철;유승화;이춘구;강영호;우현호;이헌석;이대현
    • 드라이브 ㆍ 컨트롤
    • /
    • 제21권2호
    • /
    • pp.53-64
    • /
    • 2024
  • Global population growth has resulted in an increased demand for food production. Simultaneously, aging rural communities have led to a decrease in the workforce, thereby increasing the demand for automation in agriculture. Drones are particularly useful for unmanned pest control fields. However, the current method of uniform spraying leads to environmental damage due to overuse of pesticides and drift by wind. To address this issue, it is necessary to enhance spraying performance through precise performance evaluation. Therefore, as a foundational study aimed at optimizing drone-based pest control technologies, this research evaluated water-sensitive paper (WSP) via density map estimation using convolutional neural networks (CNN) with a encoder-decoder structure. To achieve more accurate estimation, this study implemented multi-task learning, incorporating an additional classifier for image segmentation alongside the density map estimation classifier. The proposed model in this study resulted in a R-squared (R2) of 0.976 for coverage area in the evaluation data set, demonstrating satisfactory performance in evaluating WSP at various density levels. Further research is needed to improve the accuracy of spray result estimations and develop a real-time assessment technology in the field.

혼합형 데이터 보간을 위한 디노이징 셀프 어텐션 네트워크 (Denoising Self-Attention Network for Mixed-type Data Imputation)

  • 이도훈;김한준;전종훈
    • 한국콘텐츠학회논문지
    • /
    • 제21권11호
    • /
    • pp.135-144
    • /
    • 2021
  • 최근 데이터 기반 의사결정 기술이 데이터 산업을 이끄는 핵심기술로 자리 잡고 있는바, 이를 위한 머신러닝 기술은 고품질의 학습데이터를 요구한다. 하지만 실세계 데이터는 다양한 이유에 의해 결측값이 포함되어 이로부터 생성된 학습된 모델의 성능을 떨어뜨린다. 이에 실세계에 존재하는 데이터로부터 고성능 학습 모델을 구축하기 위해서 학습데이터에 내재한 결측값을 자동 보간하는 기법이 활발히 연구되고 있다. 기존 머신러닝 기반 결측 데이터 보간 기법은 수치형 변수에만 적용되거나, 변수별로 개별적인 예측 모형을 만들기 때문에 매우 번거로운 작업을 수반하게 된다. 이에 본 논문은 수치형, 범주형 변수가 혼합된 데이터에 적용 가능한 데이터 보간 모델인 Denoising Self-Attention Network(DSAN)를 제안한다. DSAN은 셀프 어텐션과 디노이징 기법을 결합하여 견고한 특징 표현 벡터를 학습하고, 멀티태스크 러닝을 통해 다수개의 결측치 변수에 대한 보간 모델을 병렬적으로 생성할 수 있다. 제안 모델의 유효성을 검증하기 위해 다수개의 혼합형 학습 데이터에 대하여 임의로 결측 처리한 후 데이터 보간 실험을 수행한다. 원래 값과 보간 값 간의 오차와 보간된 데이터를 학습한 이진 분류 모델의 성능을 비교하여 제안 기법의 유효성을 입증한다.

중등 생물교과 심화과정 학습용 웹 기반 학습 프로그램 개발 및 적용 (Development and Application of Web-based Instruction Program for the Enriched Course of School Biology)

  • 예진희;박창보;서혜애;송방호
    • 한국과학교육학회지
    • /
    • 제22권2호
    • /
    • pp.299-313
    • /
    • 2002
  • 본 연구에서는 제7차 교육과정의 중등 과학 생물영역 심화학습을 위한 웹 기반 학습 프로그램을 개발하였으며, 중학교 3학년을 대상으로 적용한 결과를 분석하였다. 중학교 전학년 및 고등학교 1학년 생물영역 심화과정의 5개 주제를 선정하여 의문형으로 제시했으며, 각 주제별로 4개의 하위 학습단원 '활동'을 설정. 총 20개의 '활동'을 개발하였다. 먼저 2개의 하위활동은 기본 및 심화과정 학습내용을 설명하고, 3번째 하위활동은 가상실험을, 4번째 하위활동은 평가 및 정리 문제를 제시하는 방향에서 설계하였다. 이외에 풍부한 자료와 보충 설명을 위하여 용어 사전을 4개 하위활동에 삽입하였다. 각 활동은 하이퍼링트시켜 서로 상호 연결되도록 하였으며, 학습자가 직접실험을 설계 수행하고 결과를 확인할 수 있도록 가상실험을 설계하였다. 개발된 웹 기반 학습 프로그램의 효과를 분석하기 위하여, 중학교 3학년 247명의 학생들을 대상으로 프로그램을 적용하고 설문조사를 실시하였다. 그 결과 대부분의 학생들은 가정에서 인터넷을 사용할 수 있는 것으로 나타났으며, 과제학습을 수행하기보다는 e-mail이나 정보 검색을 목적으로 인터넷을 활용하는 것으로 조사되었다. 프로그램을 학습한 67명의 학생들은 프로그램을 학습하지 않은 학생들에 비해 '생식과 발생'단원의 학습성취도에서 유의미하게 높은 점수를 얻었다. 또한, 학생들은 웹 기반 학습 프로그램의 가상실험과 애니메이션 효과를 선호하였으며, 프로그램이 다른 웹 기반 프로그램에 비해 우수하다고 평가하였다. 반면, 웹 기반 학습 프로그램을 학습하지 않은 학생들은 다론 웹 기반학습 프로그램에 관심이 없으며, 과학에도 흥미가 없다고 응답하였다. 최근 학생들이 가정과 학교에서 인터넷을 활용할 수 있는 여건은 조성되었으나, 학생들의 흥미와 학습효과를 신장시킬 수 있는 웹 기반 프로그램의 개발 보급은 미비한 것으로 밝혀졌다. 결론적으로 가상실험, 애니메이션, 다양한 학습자료를 제공할 수 있는 인터넷의 환경을 효율적으로 활용하여, 학생들의 과학에 대한 흥미와 학업 성취도를 높이는 과학분야의 웹 기반 학습프로그램을 개발하는 일이 시급한 것으로 밝혀졌다.

특허문서 필드의 기능적 특성을 활용한 IPC 다중 레이블 분류 (IPC Multi-label Classification based on Functional Characteristics of Fields in Patent Documents)

  • 임소라;권용진
    • 인터넷정보학회논문지
    • /
    • 제18권1호
    • /
    • pp.77-88
    • /
    • 2017
  • 최근 지식과 정보가 가치를 생산하는 지식기반사회로 접어들면서 지식재산권의 대표적인 형태인 특허에 대한 중요성이 매우 높아지고 있으며 출원되는 특허의 양도 매년 증가하고 있다. 방대한 양의 특허정보를 효과적으로 이용하기 위해서 특허문서를 그 발명의 기술적 주제에 따라 적절하게 분류하는 것이 필요하며 이를 위해 IPC(International Patent Classification)가 주로 사용되고 있다. 현재 주로 사람의 손으로 이뤄지는 특허문서의 IPC 분류과정의 효율성을 높이기 위하여 다양한 데이터마이닝과 기계학습 알고리즘을 기반으로 IPC 자동분류에 관한 연구들이 수행되어 왔다. 하지만 기존의 IPC 자동분류에 관한 연구의 대부분은 특허문서의 구조적 특징과 같은 특허문서 고유의 데이터 특성에 대한 고려보다는 다양한 기계학습 알고리즘을 특허문서로 적용하는 것에 초점을 맞춰왔다. 이에 본 논문에서는 IPC 자동분류를 위해 특허문서의 특징과 구조적 필드의 역할을 기반으로 특허문서 분류에 영향을 끼치는 두 가지 필드, 기술분야 및 배경기술 필드의 활용을 제안한다. 그리고 특허문서가 동시에 다수의 IPC 분류코드를 가지는 점을 반영하여 다중 레이블 분류(multi-label classification) 모델을 구축한다. 또한 IPC 다중 레이블 분류의 실제 현장에서의 적용 가능성 확인을 위해 630개의 범주를 가지는 IPC 서브클래스 레벨까지 분류 가능한 수법을 제안한다. 이를 위해 국내에서 등록된 564,793건의 특허문서를 대상으로 특허문서의 구조적 필드의 영향을 확인하기 위한 IPC 다중 레이블 분류 실험을 수행하였고, 그 결과 제목, 요약, 청구항, 기술분야 및 배경기술 필드를 활용한 실험에서 87.2%의 싱글매치 정확도를 얻었다. 이를 통해 기술분야 및 배경기술 두 필드가 IPC 서브클래스 레벨까지의 다중 레이블 분류의 정확도를 향상시키는데 중요한 역할을 하고 있음을 확인하였다.

프라이버시 보호를 위한 오프사이트 튜닝 기반 언어모델 미세 조정 방법론 (Privacy-Preserving Language Model Fine-Tuning Using Offsite Tuning)

  • 정진명;김남규
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.165-184
    • /
    • 2023
  • 최근 구글의 BERT, OpenAI의 GPT 등, 언어모델(Language Model)을 사용한 비정형 텍스트 데이터에 대한 딥러닝(Deep Learning) 분석이 다양한 응용에서 괄목할 성과를 나타내고 있다. 대부분의 언어모델은 사전학습 데이터로부터 범용적인 언어정보를 학습하고, 이후 미세 조정(Fine-Tuning) 과정을 통해 다운스트림 태스크(Downstream Task)에 맞추어 갱신되는 방식으로 사용되고 있다. 하지만 최근 이러한 언어모델을 사용하는 과정에서 프라이버시가 침해될 수 있다는 우려가 제기되고 있다. 즉 데이터 소유자가 언어모델의 미세 조정을 수행하기 위해 다량의 데이터를 모델 소유자에게 제공하는 과정에서 데이터의 프라이버시가 침해될 수 있으며, 반대로 모델 소유자가 모델 전체를 데이터 소유자에게 공개하면 모델의 구조 및 가중치가 공개되어 모델의 프라이버시가 침해될 수 있다는 것이다. 이러한 상황에서 프라이버시를 보호하며 언어모델의 미세 조정을 수행하기 위해 최근 오프사이트 튜닝(Offsite Tuning)의 개념이 제안되었으나, 해당 연구는 제안 방법론을 텍스트 분류 모델에 적용하는 구체적인 방안을 제시하지 못했다는 한계를 갖는다. 이에 본 연구에서는 한글 문서에 대한 다중 분류 미세 조정 수행 시, 모델과 데이터의 프라이버시를 보호하기 위해 분류기를 추가한 오프사이트 튜닝을 적용하는 구체적인 방법을 제시한다. 제안 방법론의 성능을 평가하기 위해 AIHub에서 제공하는 ICT, 전기, 전자, 기계, 그리고 의학 총 5개의 대분야로 구성된 약 20만건의 한글 데이터에 대해 실험을 수행한 결과, 제안하는 플러그인 모델이 제로 샷 모델 및 오프사이트 모델에 비해 분류 정확도 측면에서 우수한 성능을 나타냄을 확인하였다.

Design, Development and Testing of the Modular Unmanned Surface Vehicle Platform for Marine Waste Detection

  • Vasilj, Josip;Stancic, Ivo;Grujic, Tamara;Music, Josip
    • Journal of Multimedia Information System
    • /
    • 제4권4호
    • /
    • pp.195-204
    • /
    • 2017
  • Mobile robots are used for years as a valuable research and educational tool in form of available open-platform designs and Do-It-Yourself kits. Rapid development and costs reduction of Unmanned Air Vehicles (UAV) and ground based mobile robots in recent years allowed researchers to utilize them as an affordable research platform. Despite of recent developments in the area of ground and airborne robotics, only few examples of Unmanned Surface Vehicle (USV) platforms targeted for research purposes can be found. Aim of this paper is to present the development of open-design USV drone with integrated multi-level control hardware architecture. Proposed catamaran - type water surface drone enables direct control over wireless radio link, separate development of algorithms for optimal propulsion control, navigation and communication with the ground-based control station. Whole design is highly modular, where each component can be replaced or modified according to desired task, payload or environmental conditions. Developed USV is planned to be utilized as a part of the system for detection and identification of marine and lake waste. Cameras mounted to the USV would record sea or lake surfaces, and recorded video sequences and images would be processed by state-of-the-art computer vision and machine learning algorithms in order to identify and classify marine and lake waste.