• 제목/요약/키워드: Multi-wires

검색결과 107건 처리시간 0.029초

원자로 입출구 노즐 이종금속 용접부 Weld Inlay 레이저 클래딩 공정 개발 (Process Development of Laser Cladding for Weld Inlay Repair of Dissimilar Metal Weld in Reactor Vessel In/Outlet Nozzles)

  • 조홍석;정광운;모민환;조기현;최동철;이장욱;조상범
    • 한국압력기기공학회 논문집
    • /
    • 제11권1호
    • /
    • pp.53-60
    • /
    • 2015
  • This study was investigated to develop process technology of laser cladding with austenite stainless steel for Weld Inlay repair of dissimilar metal weld in reactor vessel in/outlet nozzles. Weld Inlay experiments were performed by laser cladding repair system consisting of common manipulator, laser apparatus and welding process scheduler, etc. Single pass welding experiments were conducted in order to obtain the optimum welding process parameters for filler wires of ER309L and Alloy 52M before multi-layer laser cladding. Based on the above obtained results, multi-layer laser cladding experiments were carried out, and welding qualities for weld specimens were estimated by PT, OM, SEM and EDS analysis. Consequently, it was revealed that multi-layer laser cladding on austenite stainless steel using filler wires of ER309L and Alloy 52M could be possible to meet ASME Code standard without any weld defect.

배전선로에서의 조가선 차폐 효과 연구 (A Study on a Shielding Effect of the Messenger Wires in Distribution Lines)

  • 김인수;한웅;여상민;김철환;원봉주;임용훈
    • 전기학회논문지
    • /
    • 제58권3호
    • /
    • pp.431-436
    • /
    • 2009
  • As the telecommunication lines bring into widespread use, one of the most important aspects related to power distribution systems is effectively to evaluate the effect on the telecommunication lines from power lines. One of the efficient methods to evaluate the effect is to measure the induced voltage of a telecommunication line as a result of a ground-loop. If the power lines cause high induced voltage, the ground reference in the telecommunication lines is no longer a stable potential, so signals may ride on the noise. A ground loop is common wiring conditions where a ground current may take more than one path to return to the grounding electrode at the arrangement between the power lines and telecommunication lines. When a multi-path connection between the power lines and telecommunication line circuits exists, the resulting arrangement is known as a ground loop. Whenever a ground loop exists, there are potential for damages or abnormal operations of the telecommunication lines. The power lines can induce the voltage on the communication line. The effects can be calculated by considering the inductances and capacitances. However, if we assume that there are only power lines, it doesn't have a practical meaning because there are conductors with other purpose in the neighborhood of the lines. If we consider that case, we need more complex system. Therefore we suggest more complex system considering the conductors with other purpose in the neighborhood of the lines. The neutral wires and the overhead ground wires are considered for calculating the induced voltage. We assume that there are the messenger wires beside the power line as a result of increased use of them. The main purpose of this paper is a study on a shielding effect of messenger wires in the distribution lines. EMTP(Electro-Magnetic Transients Program) program is used for the induced voltage calculation.

멀티코어 SoC의 테스트 시간 감축을 위한 테스트 Wrapper 설계 (A Test Wrapper Design to Reduce Test Time for Multi-Core SoC)

  • 강우진;황선영
    • 한국통신학회논문지
    • /
    • 제39B권1호
    • /
    • pp.1-7
    • /
    • 2014
  • 본 논문은 멀티 코어 SoC의 전체 테스트 시간 감축을 위한 효율적인 테스트 wrapper 설계 방법을 제안한다. 제안된 알고리즘은 잘 알려진 Combine 알고리즘을 사용하여 멀티코어 SoC의 각 코어에 대해 초기 local wrapper해 집합을 구성하고 가장 긴 테스트 시간을 소모하는 코어를 dominant 코어로 선택한다. Dominant 코어의 테스트 시간을 기준으로 다른 코어들에 대해 wrapper 특성인 TAM 와이어 수와 테스트 시간을 조정한다. Design space exploration을 위해 일부 코어들의 TAM 와이어 수를 줄이고 테스트 시간을 증가시킨다. 변경된 wrapper 특성을 기존 local wrapper 해 집합에 추가한다. 코어들의 기존 local wrapper 해 집합이 global wrapper 해 집합으로 확장되어 스케줄러에 의한 멀티코어 SoC의 전체 테스트 시간이 감소한다. 제안된 wrapper의 효과는 ITC'02 벤치마크 회로에 대해 $B^*$-트리 기반의 테스트 스케줄러를 사용하여 검증된다. 실험 결과 기존의 wrapper를 사용하는 경우에 비해 테스트 시간이 평균 4.7% 감소한다.

22.9kV 배전선로 중성선 설치 구조에 따른 유도뢰 차폐효과 분석 (Analysis on the Induced Lightning Shielding Effect According to the Neutral Wire Installation Structure of a 22.9kV Distribution Line)

  • 김점식;김도영;박용범
    • 전기학회논문지P
    • /
    • 제59권2호
    • /
    • pp.191-196
    • /
    • 2010
  • The electricity distribution system in Korea is adopting a multi-grounding system. Protection of this distribution system against lightning is performed by installing overhead ground wires over the high voltage wires, and connecting the overhead ground wires to the ground every 200 m. The ground resistance in this system is limited not to exceed $50\Omega$ and overhead ground wire and neutral wire are multiple parallel lines. Although overhead ground wire and neutral wire are installed in different locations on the same pole, this circuit configuration has duplicated functions of providing a return path for unbalanced currents and protecting the distribution system against induced lightning. Therefore, the purpose of this study is to analyze the induced lightning shielding effect according to the neutral wire installation structure of a 22.9kV distribution line in order to present a new 22.9kV distribution line structure model and characteristics. This study calculated induced lightning voltage by performing numerical analysis when an overhead ground wire is present in the multi-grounding type 22.9kV distribution line structure, and calculated the induced lightning shielding effect based on this calculated induced lightning voltage. In addition, this study proposed and analyzed an improved distribution line model allowing the use of both overhead wire and neutral wire to be installed in the current distribution lines. The result of MATLAB simulation using the conditions applied by Yokoyama showed almost no difference between the induced lightning voltage developed in the current line and that developed in the proposed line. This signifies that shielding the induced lightning voltage through overhead wire makes no difference between current and proposed distribution line structures. That is, this study found that the ground resistance of the overhead wire had an effect on the induced lightning voltage, and that the induced lightning shielding effect of overhead wire is small.

초경량 금속구조재의 제작을 위한 새로운 방안 (A New Way to Manufacture Ultra Light Metal Structures)

  • 강기주;전계포;나성준;주보성;홍남호
    • 대한기계학회논문집A
    • /
    • 제28권3호
    • /
    • pp.296-303
    • /
    • 2004
  • Recently, the ultra light metal structure with periodic and three dimensional truss elements takes attention because of its multi-functionality and substantial heat resistance. However, the complicated fabrication process leading to high cost has been a major obstacle to wide applications. In this paper, a new idea to construct an ultra light structure with periodic, three dimensional truss using metal wires is presented. To prove the practical validity, a Kagome-like structure was fabricated from stamped wires and punched face sheets. It was assembled by soldering. Through three-point bending and compression tests, the strength was evaluated and compared with the theory.

유한요소법을 이용한 고온 초전도 다심 원형선재의 결합전류분포 및 손실계산 (Coupling Currents distribution and Losses of HTS Mult-filament round wires by using FEM)

  • 심정욱;차귀수;이지광
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.834-836
    • /
    • 2000
  • The round HTS wire is easier to handle than the rectangular HTS tape. This paper describes the coupling losses of the round HTS wires by finite element method. Effect of filament arrangement and filament size of the round HTS wire are considered. Three types of filaments arrangement, one and double layer radial filaments and Multi-filament, are considered. Calculation results show that coupling losses of the one layer filaments round HTS wire vary only a little with the direction of external magnetic field.

  • PDF

R&D trends of high current REBCO conductor

  • Oh, Sang-Soo
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권1호
    • /
    • pp.1-7
    • /
    • 2022
  • So far, large-scale scientific devices such as nuclear fusion tokamaks and high energy circular accelerators were constructed using high-current conductors made of metallic superconducting wires. Recently, as REBCO superconducting wires usable in high magnetic fields have been developed by several companies, researchesto apply high current cable type REBCO conductors to next-generation large superconducting magnets were also started. High critical currents of several kA or more in high magnetic fields have been successfully demonstrated on test samples of REBCO cable conductors by several research groups. In this review article, the main features and properties of the representative high current REBCO conductors such as CORC(Conductor On Round Core), TSTC(Twisted Stacked-Tape Cable) and RACC(Roebel-Assembled Coated Conductor), which are currently being developed at abroad are briefly introduced. Research activities of high-current density REBCO MHOS(Multi HTS layers on One Substrate) conductor at KERI, whose structure is different from other cable type REBCO conductors are also shortly introduced.

접지전류 측정에 의한 다중 접지계통의 접지저항 측정 (Measurement of Resistance of Multi-Grounded System by Ground Current Measurement)

  • 최종기;안용호;정길조;한병성;김경철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권4호
    • /
    • pp.234-237
    • /
    • 2004
  • Measuring ground resistance has been a popular method of evaluation of the grounding electrode performance. If some portions of grounding electrodes are lost by corrosion, aging or other reasons, consequent deteriotation of the grounding performance would be resulted. It is one of the reasons why it is required to evaluate the performance of grounding systems regularly. However, in case of the electric facilities with multi-grounded system such as power substations with multi-grounded overhead ground wires and/or distribution line neutrals, it is practically difficult to disconnect neutrals or skywires from the substation grounding mesh for the ground resistance measurement. In this paper, a method for the grounding performance measurement of multi-grounded systems, which is based on the measuring ground current distributions, has been proposed. A field test results has shown the validity of the proposed test method.

접지전류 측정에 의한 다중 접지계통의 접지저항 측정 (Measurement of Resistance of Multi-Grounded System by Ground Current Measurement)

  • 최종기;안용호;정길조;한병성;김경철
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.234-234
    • /
    • 2004
  • Measuring ground resistance has been a popular method of evaluation of the grounding electrode performance. If some portions of grounding electrodes are lost by corrosion, aging or other reasons, consequent deteriotation of the grounding performance would be resulted. It is one of the reasons why it is required to evaluate the performance of grounding systems regularly. However, in case of the electric facilities with multi-grounded system such as power substations with multi-grounded overhead ground wires and/or distribution line neutrals, it is practically difficult to disconnect neutrals or skywires from the substation grounding mesh for the ground resistance measurement. In this paper, a method for the grounding performance measurement of multi-grounded systems, which is based on the measuring ground current distributions, has been proposed. A field test results has shown the validity of the proposed test method.

멀티테스터를 이용한 3상유도전동기 고정자 권선의 극성 판별법에 관한 연구 (A study on how to discriminate the polarities of stator windings for 3 phase induction motors by using general purpose multi-testers)

  • 최순만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1137-1140
    • /
    • 2014
  • 선박의 전동기에 고장이 발생하면 대개 육상에서 수리 후 본선에 다시 재설치 되고 있으나 연결 단자의 기호 표시가 지워지거나 분명치 않을 때는 결선과정에서 전동기 권선의 극성 구별이 어려워진다. 이로 인해 Y-${\delta}$ 기동의 전동기에서 한 권선의 극성을 반대로 잘못 연결하는 경우 전원 투입과 동시에 과다한 전류가 흐르면서 재차 2차 고장으로 이어질 위험이 있다. 이러한 문제와 관련하여 본 논문은 고정자의 1상 권선에 미소 직류전류를 흘릴 때 나머지 권선들에서 유도되는 과도 기전력의 특성을 토대로 아날로그 멀티테스터를 이용한 고정자 권선의 극성 판별법을 제시하고 관련 특성을 분석한다. 또한, 이 같은 방식을 실제 전동기에 적용하여 단계적인 측정과정을 통해 단자연결의 이상여부를 현장에서 용이하게 판별할 수 있는지를 확인해 보기로 한다.