• Title/Summary/Keyword: Multi-winding

Search Result 138, Processing Time 0.026 seconds

Analysis on the Effect of Filter to Mitigate Transient Overvoltage on the High Voltage Induction Motor Fed by Multi Level Inverter using EMTP (EMTP를 이용한 멀티레벨 인버터 구동 고압유도전동기에서 발생하는 과도과전압 저감필터의 효과분석)

  • Kwon, Young-Mok;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.10
    • /
    • pp.82-93
    • /
    • 2006
  • In this paper, filters are designed to reduce transients overvoltage in inverter fed high-voltage large-capacity induction motor drive system. Design issues for a LCR filter at the inverter output terminals to reduce the dv/dt of the inverter output pulse and a RC filter at the induction motor input terminals to match the characteristic impedance between cable and induction motor are examined in detail. These filters are modeled to be suitable to high-voltage large-capacity induction motor. The performance of the filter is evaluated through simulation using EMTP(ElectroMagnetic Transients Program). We presented filters that used high voltage large-capacity induction Motor on the basis of this. Effect of the filter is analyzed for variation of the cable length. Characteristics of filters are analyzed to reduce harmonic in voltage waveform of induction motor input terminal. The switching surge voltage became the major cause to occur the insulation failure by serious voltage stress in the stator winding of induction motor. Filter for to mitigate transients overvoltage presents a required component in drive system of high-voltage large-capacity induction motor. Also, proposed filters are proved through simulation using EMTP.

Analysis on the Effect of LCR Filter to Mitigate Transient Overvoltage on the High Voltage Induction Motor Fed by Multi Level Inverter (멀티레벨 인버터 구동 고압유도전동기에시 발생하는 과도과전압 저감을 위한 LCR필터의 효과분석)

  • Kim, Jae-Chul;Kwon, Young-Mok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.45-52
    • /
    • 2006
  • In this paper, we analyze on the effect of LCR filter to mitigate transient overvoltage on the high voltage induction motor fed by H-bridge cascaded 7-level inverter. The switching surge voltage that it was occurred in inverter appears transient overvoltage at the motor input terminal. the transient overvoltage becomes the major cause to occur the insulation failure by serious voltage stress in the stator winding of high voltage induction motor. The effect of transient overvoltage appears more serious in high voltage induction motor than low voltage induction motor. We selected LCR filter for reduction of the transient overvoltage. Consequently, we demonstrated that the LCR filter connected to the invertor output terminals greatly reduces the transient voltage stress and ringing. The results of simulation show the suppression of transient overvoltage at the motor end of a long cable. using EMTP

Design of a gate driver driving active balancing circuit for BMSs. (BMS용 능동밸런싱 회로 소자 구동용 게이트 구동 칩 설계)

  • Kim, Younghee;Jin, Hongzhou;Ha, Yoongyu;Ha, Panbong;Baek, Juwon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.732-741
    • /
    • 2018
  • In order to maximize the usable capacity of a BMS (battery management system) that uses several battery cells connected in series, a cell balancing technique that equips each cell with the same voltage is needed. In the active cell balancing circuit using a multi-winding transformer, a balancing circuit that transfers energy directly to the cell (cell-to-cell) is composed of a PMOS switch and a gate driving chip for driving the NMOS switch. The TLP2748 photocoupler and the TLP2745 photocoupler are required, resulting in increased cost and reduced integration. In this paper, instead of driving PMOS and NMOS switching devices by using photocoupler, we proposed 70V BCD process based PMOS gate driving circuit, NMOS gate driving circuit, PMOS gate driving circuit and NMOS gate driving circuit with improved switching time. ${\Delta}t$ of the PMOS gate drive switch with improved switching time was 8.9 ns and ${\Delta}t$ of the NMOS gate drive switch was 9.9 ns.

Passive Device Library Implementation of LTCC Multilayer Board for Wireless Communications (무선통신용 LTCC 다층기판의 수동소자 라이브러리 구현)

  • Cho, Hak-Rae;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.172-178
    • /
    • 2019
  • This paper has designed, fabricated, and analyzed the passive devices realized using low temperature co-fired ceramic (LTCC) multi layer substrates by dividing into the shrinkage process and the non-shrinkage process. Using two types of ceramic materials with dielectric constant 7 or 40, we have fabricated the same shape of various elements in 2 different processes and compared the characteristics. For the substrate of dielctric constant 40, compared with the shrinkage process which has 17% shrink in the X and Y directions with 36% shrink in the Z direction, the non-shrinkage process has 43% shrink in the Z direction without shrink in the X and Y directions, so high dimensional accuracy and surface flatness can be obtained. The inductances and capacitances of the fabricated elements are estimated from measurement using empirical analysis equations of parameters and implemented as a design library. Depending on the substrate and the process, the inductance and capacitance depending on the turn number of winding and unit area have been measured, and empirical polynomials are proposed to predict element values.

Channel characteristics of multi-path power line using a contactless inductive coupling unit (비접촉식 유도성 결합기를 이용한 다중경로 전력선 채널 특성)

  • Kim, Hyun-Sik;Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.799-804
    • /
    • 2016
  • Broadband powerline communication (BPLC) uses distribution lines as a medium for achieving effective bidirectional data communication along with electric current flow. As the material characteristics of power lines are not good at the communication channel, the development of power line communication (PLC) systems for internet, voice, and data services requires measurement-based models of the transfer characteristics of the network suitable for performance analysis by simulation. In this paper, an analytic model describing a complex transfer function is presented to obtain the attenuation and path parameters for a multipath power line model. The calculated results demonstrated frequency-selective fading in multipath channels and signal attenuation with frequency, and were in good agreement with the experimental results. Inductive coupling units are used as couplers for coupling the signal to the power line to avoid physical connections to the distribution line. The inductance of the ferrite core, which depends on the frequency, determines the cut-off frequency of the inductive coupler. Coupling loss can be minimized by increasing the number of windings around the coupler. Coupling efficiency was improved by more than 6 dB with three windings compared to the results obtained with one winding.

Stress analysis of high-temperature superconducting wire under electrical/magnetic/bending loads

  • Dongjin Seo;Yunjo Jung;Hong-Gun Kim;Hyung-Seop Shin;Young-Soon Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.19-23
    • /
    • 2023
  • The Second-generation high-temperature superconducting (HTS) Rare-Earth Barium Copper Oxide (REBCO) wire is a composite laminate having a multi-layer structure (8 or more layers). HTS wires will undergo multiple loads including the bending-tension loads during winding, high current density, and high magnetic fields. In particular, the wires are subjected to bending stress and magnetic field stress because HTS wires are wound around a circular bobbin when making a high-field magnetic. Each of the different laminated wires inevitably exhibits damage and fracture behavior of wire due to stress deformation, mismatches in thermal, physical, electrical, and magnetic properties. Therefore, when manufacturing high-field magnets and other applications, it is necessary to calculate the stress-strain experienced by high-temperature superconducting wire to present stable operating conditions in the product's use environment. In this study, the finite element model (FEM) was used to simulate the strain-stress characteristics of the HTS wire under high current density and magnetic field, and bending loads. In addition, the result of obtaining the neutral axis of the wire and the simulation result was compared with the theoretical calculation value and reviewed. As a result of the simulation using COMSOL Multiphysics, when a current of 100 A was applied to the wire, the current value showed the difference of 10-9. The stress received by the wire was 501.9 MPa, which showed a theoretically calculated value of 500 MPa and difference of 0.38% between simulation and theoretical method. In addition, the displacement resulted is 30.0012 ㎛, which is very similar to the theoretically calculated value of 30 ㎛. Later, the amount of bending stress by the circular mandrel was received for each layer and the difference with the theoretically obtained the neutral axis result was compared and reviewed. This result will be used as basic data for manufacturing high-field magnets because it can be expanded and analyzed even in the case of wire with magnetic flux pinning.

A Study on the Application of Bushings Fire Prevent Structure to Prevent Fire Spread of Transformer (변압기의 화재확산 방지를 위한 부싱 방화구조체 적용에 관한 연구)

  • Kim, Do-Hyun;Cho, Nam-Wook;Yoon, Choung-Ho;Park, Pil-Yong;Park, Keun-Sung
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.53-62
    • /
    • 2017
  • Electric power which is the energy source of economy and industries requires long distance transportation due to regional difference between its production and consumption, and it is supplied through the multi-loop transmission and distribution system. Prior to its actual use, electric power flows through several transformations by voltage transformers in substations depending on the characteristics of each usage, and a transformer has the structure consisting of the main body, winding wire, insulating oil and bushings. A transformer fire that breaks out in substations entails the primary damage that interrupts the power supply to houses and commercial facilities and causes various safety accidents as well as the secondary economic losses. It is considered that causes of such fire include the leak of insulating oil resulting from the destruction of bottom part of bushings, and the chain reaction of fire due to insulating oil that reaches its ignition point within 1 second. The smoke detector and automatic fire extinguishing system are established in order to minimize fire damage, but a difficulty in securing golden time for extinguishing fire due to delay in the operation of detector and release of gas from the extinguishing system has become a problem. Accordingly, this study was carried out according to needs of active mechanism to prevent the spread of fire and block the leak of insulating oil, in accordance with the importance of securing golden time in extinguishing a fire in its early stage. A bushings fireproof structure was developed by applying the high temperature shape retention materials, which are expanded by flame, and mechanical flame cutoff devices. The bushings fireproof structure was installed on the transformer model produced by applying the actual standards of bushings and flange, and the full scale fire test was carried out. It was confirmed that the bushings fireproof structure operated at accurate position and height within 3 seconds from the flame initiation. It is considered that it could block the spread of flame effectively in the event of actual transformer fire.

Fabrication and Performance of Anode-Supported Flat Tubular Solid Oxide Fuel Cell Unit Bundle (연료극 지지체식 평관형 고체산화물 연료전지 단위 번들의 제조 및 성능)

  • Lim, Tak-Hyoung;Kim, Gwan-Yeong;Park, Jae-Layng;Lee, Seung-Bok;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.283-287
    • /
    • 2007
  • KIER has been developing the anode-supported flat tubular solid oxide fuel cell unit bundle for the intermediate temperature($700{\sim}800^{\circ}C$) operation. Anode-supported flat tubular cells have Ni/YSZ cermet anode support, 8 moi.% $Y_2O_3$ stabilized $ZrO_2(YSZ)$ thin electrolyte, and cathode multi-layer composed of Sr-doped $LaSrMnO_3(LSM)$, LSM-YSZ composite, and $LaSrCoFeO_3(LSCF)$. The prepared anode-supported flat tubular cell was joined with ferritic stainless steel cap by induction brazing process. Current collection for the cathode was achieved by winding Ag wire and $La_{0.6}Sr_{0.4}CoO_3(LSCo)$ paste, while current collection for the anode was achieved by using Ni wire and felt. For making stack, the prepared anode-supported flat tubular cells with effective electrode area of $90\;cm^2$ connected in series with 12 unit bundles, in which unit bundle consists of two cells connected in parallel. The performance of unit bundle in 3% humidified $H_2$ and air at $800^{\circ}C$ shows maximum power density of $0.39\;W/cm^2$ (@ 0.7V). Through these experiments, we obtained basic technology of the anode-supported flat tubular cell and established the proprietary concept of the anode-supported flat tubular cell unit bundle.