• 제목/요약/키워드: Multi-walled carbon nanotube(CNT)

검색결과 80건 처리시간 0.028초

탄소 나노튜브 나노유체의 열전도도에 대한 연구 (A Study on the Thermal Conductivity of Carbon-Nanotube Nanofluids)

  • 김봉훈
    • 설비공학논문집
    • /
    • 제19권3호
    • /
    • pp.275-283
    • /
    • 2007
  • An experimental study was conducted to investigate the effect of the morphology of CNT (Carbon Nanotube) on the thermal conductivity of suspensions. The effective thermal conductivities of the samples were measured using a steady-state cut bar apparatus method. Enhancements based on the thermal conductivity of the base fluid are presented as functions of both the volume fraction and the temperature. Although functionalized SWNT (Single-Walled Carbon Nanotube) produced more stable and homogeneous suspensions, the addition of small amounts of surfactant to suspensions of 'as produced' SWNT demonstrated a greater increase in effective thermal conductivity than functionalized SWNT alone. The effective thermal conductivity enhancement corresponding to 1.0% by volume approached 10%, which was observed to be lower than expected, but more than twice the values, 3.5%, obtained for similar tests conducted using aluminum oxide suspensions. However, for suspensions of MWNT (Multi-Walled Carbon Nanotube), the degree of enhancement was measured to be approximately 37%. It was postulated that the effect of clustering, resulting from the multiple heat-flow passages constituted by interconnecting neighboring CNT clusters, played an important role in significant enhancement of effective thermal conductivity.

Highly Homogeneous Carbon Nanotube-Polycaprolactone Composites with Various and Controllable Concentrations of Ionically-Modified-MWCNTs

  • Lee, Hae-Hyoung;Shin, Ueon-Sang;Jin, Guang-Zhen;Kim, Hae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.157-161
    • /
    • 2011
  • For the fabrication of multifunctional biopolymer nanocomposites in the combination of carbon nanotubes (CNTs), recently increasing attention has been paid to an effective homogenization of CNTs within polymer matrices and a fine tuning of the concentration. We developed an efficient method to produce homogeneous CNT-polycaprolactone nanocomposites with various and controllable CNT concentrations using an ionically-modified multi-walled CNT, MWCNT-Cl. The modified MWCNTs could be homogeneously dispersed in tetrahydrofuran (THF). Polycaprolactone (PCL) as a biodegradable and biocompatible polymer was smoothly dissolved in the homogeneous MWCNT-Cl/THF solution without agglomeration of MWCNT-Cl. The physicochemical and mechanical properties of the resultant nanocomposites were examined and the biological usefulness was briefly assessed.

Effect of Liquid Surface Treatments on Field Emission Properties of Carbon Nanotube Cathodes

  • Lee, Ji-Eon;An, Young-Je;Shin, Heon-Cheol;Chung, Won-Sub;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.486-489
    • /
    • 2007
  • Carbon nanotube (CNT) cathodes having a trench structure similar to the structure of the gated triodetype cathode were successfully fabricated by a screenprinting method with multi-walled carbon nanotubes. We observed that a liquid method not only readily removes the organic residues on the CNT films, but also satisfactorily protrudes the CNTs out of the electrode surface. The CNT cathodes prepared by the liquid method showed a turned-on field of $1.4\;V/{\mu}m$. The emission current density of them was about $3.1\;mA/cm^2$ at the electric field of $3\; V/{\mu}m$. The liquid method appears to be a promising surface treatment of CNT cathode for gated triode-type FEDs applications.

  • PDF

탄소나노튜브 캐소드에서 표면처리 방법이 전계방출 특성에 미치는 영향 (Effects of Surface Treatment on Field Emission Properties for Carbon Nanotube Cathodes)

  • 성명석;오정섭;이지언;정승진;김태식;조영래
    • 한국재료학회지
    • /
    • 제16권1호
    • /
    • pp.37-43
    • /
    • 2006
  • Carbon nanotube cathodes (CNT cathodes) were fabricated by a screen printing method using multi-walled carbon nanotubes. The effects of surface treatment on CNT cathodes were investigated for use in high efficiency field emission displays. The optimum surface treatment for a CNT cathode is dependent on a relative bonding force of CNT films on the cathode after a heat treatment. Because of the high bonding force used in the Liquid method, this method is recommended for CNT cathodes which are heat-treated at $390^{\circ}C$ in a $N_2$ atmosphere. The Rolling method is applicable for CNT cathodes fabricated at $350^{\circ}C$ in an atmosphere of air. The results of this study provide basic criteria for the selection of an appropriate surface treatment for large area CNT cathodes.

Carbon Nanotube/Nafion Composites for Biomimetic Artificial Muscle Actuators

  • Lee, Se-Jong;Yoon, Hyun-Woo;Lee, Deuk-Yong
    • 한국세라믹학회지
    • /
    • 제44권4호
    • /
    • pp.198-201
    • /
    • 2007
  • Multi-walled carbon nanotube (M-CNT)/Nafion nanocomposites were prepared by solution casting to elucidate the effect of M-CNT addition, from 0 to 7 wt%, on the viscoelastic behavior of the composites. The M-CNT bundles induced by the Nafion polymer were determined to be uniformly distributed for the 1 wt% M-CNT/Nafion nanocomposites. The 1 wt% M-CNT/Nafion composite exhibited the highest blocking stress of 2.3 kPa due to its high elastic modulus of 0.485 GPa. From a dynamic mechanical analysis, the 1 wt% M-CNT had the highest storage and loss moduli compared with the other samples in all frequency and temperature ranges. From the storage modulus data, the M-CNT loaded composites had similar $T_g$ values near $120^{\circ}C$. The glass transition temperatures of the M-CNT loaded composites were $120^{\circ}C$ (1 wt%), $117^{\circ}C$ (3 wt%), $117^{\circ}C$ (5 wt%), and $135^{\circ}C$ (7 wt%), suggesting that the effect of the M-CNTs on the Nafion film begins at 1 wt%. Thus, it has been concluded that the 1 wt% M-CNT disported composite is attractive for actuator applications.

암모니아 식각 가스 도입에 의한 고순도 탄소나노튜브의 합성 (Carbon Nanotube Synthesis with High Purity by Introducing of NH3 Etching Gas)

  • 이선우;이붕주
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.782-785
    • /
    • 2013
  • Multi-walled carbon nanotubes were synthesized on Ni catalyst using thermal chemical vapor deposition. By introducing ammonia gas during the CNT synthesis process, clean and vertically aligned CNTs without impurities could be prepared. As the ammonia gas increased a partial pressure of hydrogen in the mixed gas during the CNT synthesis process, we could control the CNT synthesis rate appropriately. As the ammonia gas has an etching ability, amorphous carbon species covering the catalyst particles were effectively removed. Therefore catalyst particles could maintain their catalytic state actively during the synthesis process. Finally, we could obtain clean and vertically aligned CNTs by introducing $NH_3$ gas during the CNT synthesis process.

주사탐침현미경용 카본나노튜브 팁의 조립 조건 실험 (An Experiment about Assembling Condition of Carbon Nanotube Tip for AFM)

  • 박준기;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.501-504
    • /
    • 2004
  • This paper describes the fabrication method for atomic force microscopy(AFM) tip with multi-walled carbon nanotube(MWNT). For making a carbon nanotube (CNT) modified tips, AC electric field which cause the dielectrophoresis was used for alignment and deposition of CNTs in this research. By dropping the MWNT solution and applying an electric field between an AFM tip and an electrode, MWNTs which were dispersed into a diluted solution were directly assembled onto the apex of the AFM tips due to the attraction by the dielectrophoretic force. In this case, we investigate the effect of the angle between a tip axis and an electrode. Experimental setup were presented, and then CNT attached AFM tips are successfully shown in this paper.

  • PDF

다중벽 탄소나노튜브를 이용한 공진기 제작 (Fabrication of a Resonator using suspended Multi-wall Carbon Nanotubes)

  • 이종홍;서희원;송진원;한창수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.465-466
    • /
    • 2006
  • A single-wall carbon nanotube (SWCNT) has been studied as a material of Nano-Eletro-Mechanical-System (NEMS) device together with various nanowires. In order for oscillation of a multi-wall carbon nanotube (MWCNT) or a single-walled carbon nanotube (SWCNT) on plane surface, it needs suspension of a CNT across trench electrodes. So we propose fabrication method of a MWCNT resonator using dielectrophoresis and show successful results of suspeneded MWNT. Thin electrodes with large gaps could not suspend small diameter MWNT but thicker electrodes could. Thin MWNT could be suspended only when the electrode gap was reduced.

  • PDF

Carbon nanotubes-properties and applications: a review

  • Ibrahim, Khalid Saeed
    • Carbon letters
    • /
    • 제14권3호
    • /
    • pp.131-144
    • /
    • 2013
  • The carbon nanotube (CNT) represents one of the most unique inventions in the field of nanotechnology. CNTs have been studied closely over the last two decades by many researchers around the world due to their great potential in different fields. CNTs are rolled graphene with $SP^2$ hybridization. The important aspects of CNTs are their light weight, small size with a high aspect ratio, good tensile strength, and good conducting characteristics, which make them useful as fillers in different materials such as polymers, metallic surfaces and ceramics. CNTs also have potential applications in the field of nanotechnology, nanomedicine, transistors, actuators, sensors, membranes, and capacitors. There are various techniques which can be used for the synthesis of CNTs. These include the arc-discharge method, chemical vaporize deposition (CVD), the laser ablation method, and the sol gel method. CNTs can be single-walled, double-walled and multi-walled. CNTs have unique mechanical, electrical and optical properties, all of which have been extensively studied. The present review is focused on the synthesis, functionalization, properties and applications of CNTs. The toxic effect of CNTs is also presented in a summarized form.

Electrochemical Determination of Bisphenol A at Carbon Nanotube-Doped Titania-Nafion Composite Modified Electrode

  • Kim, Byung Kun;Kim, Ji Yeon;Kim, Dong-Hwan;Choi, Han Nim;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1065-1069
    • /
    • 2013
  • A highly sensitive electrochemical detection method for bisphenol A (BPA) has been developed by using multi-walled carbon nanotube (CNT)-doped titania-Nafion composite modified glassy carbon (GC) electrode. The CNT-titania-Nafion/GC electrode exhibited excellent electrocatalytic activity towards BPA. Therefore, the CNT-titania-Nafion/GC electrode showed improved voltammetric responses for BPA compared to that obtained with bare GC electrode. In addition, cetyltrimethylammonium bromide (CTAB), a cationic surfactant, was added into the BPA sample solution in order to accumulate BPA through hydrophobic interaction between CTAB and BPA. The CNT-titania-Nafion/GC electrode gave a linear response ($r^2$ = 0.999) for BPA from $1.0{\times}10^{-8}$ M to $5.0{\times}10^{-6}$ M with a detection limit of $9.0{\times}10^{-10}$ M (S/N = 3). The modified electrode showed good selectivity against interfering species and also exhibited good reproducibility. The present electrochemical sensor based on the CNT-titania-Nafion/GC electrode was applied to the determination of BPA in food package samples.