This paper proposes a combined very-short-term and short-term multi-variate time-series model for 24 hour load forecasting. First, the best model for very-short-term and short-term load forecasting is selected by considering the least error value, and then they are combined by the optimal forecasting time. The actual load data of industry complex is used to show the effectiveness of the proposed model. As a result the load forecasting accuracy of the combined model has increased more than a single model for 24 hour load forecasting.
본 연구에서는 전국 59개 지점의 3개월 SPI 자료를 가지고 EOF를 유도하고 아울러 그 공간적 특성을 분석하였다. 또한 EOF 해석에 의해 나타난 Coefficient Time Series를 다변량 시계열 모형에 적용하여 SPI 시계열을 자료기간 10,000년으로 확장하였고 전국적인 가뭄심도를 판단하기 위해 전국 평균 지수를 이용하여 재현기간별 최대심도를 결정하였다. 마지막으로 각 대권역의 댐 유효저수량과 농경지 면적을 이용하여 농업가뭄 대비능력을 판단하였는데 재현기간 30년 가뭄에 적절히 대비할 수 있는 이수능력을 갖춘 유역은 한강유역이 유일한 것으로 파악되었다. 특히 영산강 유역은 큰 농경지 면적에 비해 저수용량이 크게 부족한 것으로 파악되었고 강우량의 크기에 민감한 농업가뭄에 가장 취약할 것으로 나타났다.
기초연구 분야는 정부의 적극적인 지원으로 양적 확대가 큰 폭으로 이루어지는 반면, 체계적인 투자계획이나 데이터에 기반한 재정소요를 제시하는 연구 및 정책자료가 전무하여 관련 연구가 요구되는 시점이다. 이에 본 연구는 시계열 예측모형을 활용하여 기초연구지원사업의 향후 재정소요를 전망하였다. 기초연구분야의 특성을 포함한 다양한 요인들을 종합적으로 고려하기 위하여 시간에 따른 단일 종속변수의 값을 예측하는 ARIMA 모형이 아닌, 다변수의 영향을 반영할 수 있는 ARIMAX 모형을 선택하였다. 모형 적합성 판단을 위해 ARIMAX 모형과 ARIMA 모형의 예측값을 비교한 결과 ARIMAX 모형에서 예측오차율이 개선됨을 확인하였다. ARIMAX 모형에 기반하여 2017년에서 2021년까지 5년 간의 기초연구지원사업 재정소요를 전망하였다. 본 연구는 기초연구지원사업의 재정소요를 통계적 접근방법인 시계열모형을 적용해 전망한 시범적 연구를 수행하였다는 점과, 단변량이 아닌 다변량을 고려하여 예측력을 개선했다는 점에서 의의를 지닌다. 또한 현 정부 국정과제인 '기초연구 예산 2배 확대' 등 기초연구 투자의 중요성이 꾸준히 강조되는 정책기조를 고려할 때 향후 기초연구 투자전략 수립 시 참고자료로 활용 될 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권5호
/
pp.1431-1445
/
2022
We construct a deep neural network model named ECGResNet. This model can diagnosis diseases based on 12-lead ECG data of eight common cardiovascular diseases with a high accuracy. We chose the 16 Blocks of ResNet50 as the main body of the model and added the Squeeze-and-Excitation module to learn the data information between channels adaptively. We modified the first convolutional layer of ResNet50 which has a convolutional kernel of 7 to a superposition of convolutional kernels of 8 and 16 as our feature extraction method. This way allows the model to focus on the overall trend of the ECG signal while also noticing subtle changes. The model further improves the accuracy of cardiovascular and cerebrovascular disease classification by using a fully connected layer that integrates factors such as gender and age. The ECGResNet model adds Dropout layers to both the residual block and SE module of ResNet50, further avoiding the phenomenon of model overfitting. The model was eventually trained using a five-fold cross-validation and Flooding training method, with an accuracy of 95% on the test set and an F1-score of 0.841.We design a new deep neural network, innovate a multi-scale feature extraction method, and apply the SE module to extract features of ECG data.
The objectives of this study are to investigate the relationship between the growth of the horticultural sector and horticultural research and extension and to examine the socioeconomic returns to investment on research and extension in Korean horticulture. Data for horticultural production values, producer price indices and research and extension budgets for horticultural sector from 1965 to 1998 are collected from various sources. Multi-variate time series analysis technique with vector auto-regression model and Akino-Hayami Formula were employed for the analysis. This study finds (1) horticultural production responds about seven years later to the horticultural research investment shock. the magnitude of the impacts increases to a peak in seventeen years from the initial expenditures and then declines slowly thereafter until twenty years. and this peak gives a tip that horticultural research impact lasts much longer than grain's or agriculture's: (2) the social surplus from research investment benefits more to the consumer rather than to the horticultural producer: (3) B/C ratios in horticultural research are quite high with the range of 9 to 55 from 1965 to 1998. but these have been decreased since the early 1990s: (4) the socioeconomic returns to horticultural research is quite high with 56 percents of internal rate of return. It remains to be analyzed returns to investment on extension in horticulture because of no statistic significance in this study.
본 연구는 근린상가 시장에 대한 대체투자재의 영향을 분석하여 근린상가의 투자시장과 관련된 이해당사자 들에게 합리적 의사결정의 기준을 제시하였으며, 근린상가 낙찰가율에 대한 영향의 형태와 설명력을 추정한 결과 다음과 같은 결론을 얻었다. 부동산 경기를 포함한 대표적인 거시경제지표인 종합주가지수와 지가변동률의 상승은 경기활성화의 방증으로 근린상가 시장에 긍정적인 영향을 미치나 대체투자재인 이자율의 상승은 근린상가에 대한 상대적 수익률을 감소시켜 근린상가시장의 투자에 대한 매력을 감소시킨다. 소비재 특성을 지닌 주택과 자본재 특성을 지닌 근린상가는 상호 영향적 측면에서 이질적인 시장으로 나타나 큰 영향을 미치지 않음을 알 수 있다.
본 연구는 코스닥 시장에 상장 폐지된 중소제조기업의 재무자료를 이용하여 다변량 판별분석모형, 로지스틱회귀분석모형 그리고 인공신경망분석모형을 구축하고 이들의 예측력을 비교분석하였다. 표본기업은 2009년에서 2012년까지 상장 폐지된 83개의 부실기업과 83개의 정상기업 총166개사로 정하였다. 166개사 중에서 무작위로 부실기업50개사와 정상기업 50개사 총100개사를 선정하여 훈련용 표본(training data)으로 모형을 구축하는데 사용하였다. 나머지 66개사는 모형의 예측성과를 평가하기 위하여 검증용 표본(test data)으로 사용하였다. 과거 5년 동안의 재무비율 79개 자료로 T-test를 실시하여 5년 연속 유의미한 변수 9개를 선정하고 각각의 모형을 구축하였다. T-test 결과, 부실초기에는 주로 수익성지표들이 부실예측에 주요 변수로 나타났으며 부실 후반에 가면서 안정성지표와 현금흐름지표들이 추가로 유의미한 변수로 나타났다. 모형의 예측력을 비교해 보면 훈련용 표본의 경우, 로지스틱회귀분석모형이 가장 높은 분류 정확도를 보였고, 검증용 표본의 경우에는 인공신경망모형이 가장 높은 분류 정확도를 보였다. 본 연구는 첫째, 부실이 서서히 진행된다는 점을 감안하여 T-test를 실시하여 5년 연속 유의미한 변수로 모형을 구축하여 변수의 시계열적인 측면이 고려되었다는 점과, 둘째, 기존 선행 연구들이 정규성을 무시하고 판별분석모형을 구축하였으나, 본 연구가 정규성 여부를 검정하고 모형을 구축하였다는 점이 차별화된다. 본 연구에 따른 정책적 시사점은 부실기업의 징후는 본 논문에서처럼 대체로 재무제표에 나타나기 때문에 회사에 대한 공시서류의 신회성 확보가 중요하다. 따라서 이런 점에서 회계법인 혹은 세무기장 종사자들의 도덕적 해이을 억제할 수 있는 제도적 장치가 강화되어야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.