• Title/Summary/Keyword: Multi-user Multi-Input Multi-Output (MU-MIMO)

Search Result 28, Processing Time 0.019 seconds

Novel Beamforming and Scheduling Method for Interference Mitigation at Cell Edge (셀 경계 지역 간섭 완화를 위한 효율적 빔포밍 및 스케쥴링 방법)

  • Kim, Kyung Hoon;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.129-133
    • /
    • 2012
  • Coordinated multi-point transmission (CoMP) is a candidate technique for next generation cellular communications systems. One of the primary elements discussed in LTE-Advanced technology is CoMP, which can improve cell edge user data rate as well as spectral efficiency due to multiple input multiple output - orthogonal frequency division multiplex (MIMO-OFDM). We consider a system with multiple cells in which base stations coordinate with each other by sharing user channel state information (CSI), which mitigates inter cell interference (ICI), especially for users located at the cell edge. We introduce a new user scheduling method of ICI cancellation and the loss reduction of effective channel gain during the beamforming process, the proposed method improves the system sum rate, when compared to the conventional method by an average of 0.55bps/Hz in different number of total users per cell. It also outperforms the conventional method by approximately 0.38bps/Hz using different SNRs.

Optimal Inter-Element Spacing of FD-MIMO Planar Array in Urban Macrocell with Elevation Channel Modelling

  • Abubakari, Alidu;Raymond, Sabogu-Sumah;Jo, Han-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4759-4780
    • /
    • 2017
  • Full Dimension multiple input multiple output (FD-MIMO) architecture employs a planar array design at the Base Station (BS) to provide high order multi-user MIMO (MU-MIMO) via simultaneous data transmission to large number of users. With FD-MIMO, the BS can also adjust the beam direction in both elevation and azimuth direction to concentrate the energy on the user of interests while minimizing the interference leakage to co-scheduled users in the same cell or users in the neighboring cells. In a typical highly populated macrocell environment, modelling the elevation angular characteristics of three-dimensional (3D) channel is critical to understanding the performance limits of the FD-MIMO system. In this paper, we study the throughput performance of FD-MIMO system with varying elevation angular spread and inter-element spacing using a 3D spatial channel model. Our results show that for a typical urban scenario, horizontal beamforming with correlated antenna spacing achieves optimal performance but by restricting the spread of elevation angles of departure, elevation beamforming achieves high array gain with wide inter-element spacing. We also realize significant gains due to spatial array processing via modelling the elevation domain and varying the inter-element spacing for both the transmitter and receiver.

Transceiver Design Method for Finitely Large Numbers of Antenna Systems (유한 대용량 안테나 시스템에서 송수신기 설계 방법)

  • Shin, Joonwoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.280-285
    • /
    • 2015
  • We consider a linear transceiver design method for multi-user multiple-input multiple-output (MIMO) downlink channels where a base station (BS) equipped with a finitely large number of antennas. Although a matched-filter precoder is a capacity-achieving method in massive MIMO downlink systems, it cannot guarantee to achieve the multi-user MIMO capacity in a finitely large number of antennas due to inter-user interferences. In this paper, we propose a two-stage precoder design method that maximizes the sum-rate of cell-edge users when the BS equipped with a finitely large number of antennas. At the first stage, a matched-filter precoder is adopted to exploit both beamforming gain and the reduction of the dimension of effective channels. Then, we derive the second stage precoder that maximizes the sum-rate by minimizing the weighted mean square error (WMSE). From simulation and analysis, we verify the effectiveness of the proposed method.

Downlink Power Allocation Technique for Inter-User Interference Management in Multi-User Multiple-Input Multiple-Output System (다중 사용자 다중 안테나 시스템에서 단말 간 간섭 제어를 위한 하향 링크 전력 할당 기법)

  • Kwon, Kuhyung;Na, Hyunjong;Kim, Jin Min;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.41-44
    • /
    • 2014
  • In full-duplex wireless communication, spectral efficiency can be improved over half-duplex communication system. In this paper, we consider full-duplex multiple-user (MU) multiple-input multiple-output (MIMO) system in which inter-user interference may degrade the performance of the full-duplex system. We propose a downlink power allocation technique at base station that can maximize the spectral efficiency only with the statistical information about the inter-user interference channel.

The Optimal Number of Transmit Antennas Maximizing Energy Efficiency in Multi-user Massive MIMO Downlink System with MRT Precoding (MU-MIMO 하향링크 시스템에서의 MRT 기법 사용 시 에너지 효율을 최대화하는 최적 송신 안테나의 수)

  • Lee, Jeongsu;Han, Yonggue;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.33-39
    • /
    • 2014
  • We propose an optimal number of transmit antennas which maximizes energy-efficiency (EE) in multi-user massive multiple-input multiple-output (MIMO) downlink system with the maximal ratio transmission (MRT) precoding. With full channel state information at the transmitter (CSIT), we find a closed form solution by partial differential function with proper approximations using average channel gain, independence of individual channels, and average path loss. With limited feedback, we get a solution numerically by the bisection with approximations in the same manner, and analyze an effect of feedback bits on the optimal number of transmit antennas. Simulation results show that the optimal numbers of transmit antenna getting from proposed closed form solution and exhaustive search are nearly same.

Interference Mitigation Technique for the Sharing between IMT-Advanced and Fixed Satellite Service

  • Lim, Jae-Woo;Jo, Han-Shin;Yoon, Hyun-Goo;Yook, Jong-Gwan
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.159-166
    • /
    • 2007
  • In this paper, we propose an efficient and robust interference mitigation technique based on a nullsteering multi-user multiple-input multiple-output (MU-MIMO) spatial division multiple access (SDMA) scheme for frequency sharing between IMT-advanced and fixed satellite service (FSS) in the 3400-4200 and 4500-4800 MHz bands. In the proposed scheme, the pre-existing precoding matrix for SDMA unitary precoded (UPC) MIMO proposed by the authors is modified to construct nulls in the spatial spectrum corresponding to the direction angles of the victim FSS earth station (ES). Furthermore, a numerical formula to calculate the power of the interference signal received at the FSS ES when IMT-Advanced base stations (BS) are operated with the interference mitigation technique is presented. This formula can be derived in closed form and is simply implemented with the help of simulation, resulting in significantly reduced time to obtain the solution. Finally, the frequency sharing results are analyzed in the co-channel and adjacent channel with respect to minimum separation distance and direction of FSS earth station (DOE). Simulation results indicate that the proposed mitigation scheme is highly efficient in terms of reducing the separation distance as well as robust against DOE estimation errors.

Deep Reinforcement Learning based Antenna Selection Scheme For Reducing Complexity and Feedback Overhead of Massive Antenna Systems (거대 다중 안테나 시스템의 복잡도와 피드백 오버헤드 감소를 위한 심화 강화학습 기반 안테나 선택 기법)

  • Kim, Ryun-Woo;Jeong, Moo-Woong;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1559-1565
    • /
    • 2021
  • In this paper, an antenna selection scheme is proposed in massive multi-user multiple input multiple output (MU-MIMO) systems. The proposed antenna selection scheme can achieve almost the same performance as a conventional scheme while significantly reducing the overhead of feedback by using deep reinforcement learning (DRL). Each user compares the channel gains of massive antennas in base station (BS) to the L-largest channel gain, converts them to one-bit binary numbers, and feed them back to BS. Thus, the feedback overhead can be significantly reduced. In the proposed scheme, DRL is adopted to prevent the performance loss that might be caused by the reduced feedback information. We carried out extensive Monte-Carlo simulations to analyze the performance of the proposed scheme and it was shown that the proposed scheme can achieve almost the same average sum-rates as a conventional scheme that is almost optimal.

Adaptive Resource Allocation Algorithm with GTD in Downlink MU-MIMO Channel (다중 사용자 다중 안테나 하향링크 채널에서 GTD 기반의 적응적인 자원 할당 기법)

  • Choi, Seung-Kyu;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.53-59
    • /
    • 2011
  • We propose an adaptive resource allocation algorithm with generalized triangular decomposition scheme in downlink multi-user multiple-input-multiple-output channel to maximize the system throughput when we adopt the modulation scheme such as BPSK, QPSK, 16QAM, and 64QAM. The proposed scheme also considers an bit-error-rate performance as well as system throughput while performing resource allocation. We present simulation results to show that the proposed scheme achieves the system throughput up to 2bit difference by capacity and has better BER performance than SVD based resource allocation scheme in all SNR regions.