• Title/Summary/Keyword: Multi-temporal Classification

Search Result 109, Processing Time 0.018 seconds

Two-stage Deep Learning Model with LSTM-based Autoencoder and CNN for Crop Classification Using Multi-temporal Remote Sensing Images

  • Kwak, Geun-Ho;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.4
    • /
    • pp.719-731
    • /
    • 2021
  • This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.4
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.

Classification of Multi-temporal SAR Data by Using Data Transform Based Features and Multiple Classifiers (자료변환 기반 특징과 다중 분류자를 이용한 다중시기 SAR자료의 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yeseul
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • In this study, a novel land-cover classification framework for multi-temporal SAR data is presented that can combine multiple features extracted through data transforms and multiple classifiers. At first, data transforms using principle component analysis (PCA) and 3D wavelet transform are applied to multi-temporal SAR dataset for extracting new features which were different from original dataset. Then, three different classifiers including maximum likelihood classifier (MLC), neural network (NN) and support vector machine (SVM) are applied to three different dataset including data transform based features and original backscattering coefficients, and as a result, the diverse preliminary classification results are generated. These results are combined via a majority voting rule to generate a final classification result. From an experiment with a multi-temporal ENVISAT ASAR dataset, every preliminary classification result showed very different classification accuracy according to the used feature and classifier. The final classification result combining nine preliminary classification results showed the best classification accuracy because each preliminary classification result provided complementary information on land-covers. The improvement of classification accuracy in this study was mainly attributed to the diversity from combining not only different features based on data transforms, but also different classifiers. Therefore, the land-cover classification framework presented in this study would be effectively applied to the classification of multi-temporal SAR data and also be extended to multi-sensor remote sensing data fusion.

High Accuracy Classification Methods for Multi-Temporal Images

  • Hong, Sun Pyo;Jeon, Dong Keun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1E
    • /
    • pp.3-8
    • /
    • 1997
  • Three new classification methods for multi temporal images are proposed. They are named as a likelihood addition method, a likelihood majority method and a Dempster-Shafer's rule method. Basic strategies using these methods are to calculate likelihoods for each temporal data and to combine obtained likelihoods for final classification. These three methods use different combining algorithms. From classification experiments, following results were obtained. The method based on Dempster-Shafer's rule of combination showed about 12% improvement of classification accuracies compared to a conventional method. This method needed about 16% more processing times than that of a conventional method. The other two proposed method showed 1% to 5% increase of classification accuracies. However processing times of these two proposed method showed 1% to 5% increase of classification accuracies. However processing times of these two methods are almost the same with that of a conventional method. Among the newly proposed three methods, the Dempster-Shafer's rule method showed the highest classification accuracies with more processing time than those of other methods.

  • PDF

Field Crop Classification Using Multi-Temporal High-Resolution Satellite Imagery: A Case Study on Garlic/Onion Field (고해상도 다중시기 위성영상을 이용한 밭작물 분류: 마늘/양파 재배지 사례연구)

  • Yoo, Hee Young;Lee, Kyung-Do;Na, Sang-Il;Park, Chan-Won;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.621-630
    • /
    • 2017
  • In this paper, a study on classification targeting a main production area of garlic and onion was carried out in order to figure out the applicability of multi-temporal high-resolution satellite imagery for field crop classification. After collecting satellite imagery in accordance with the growth cycle of garlic and onion, classifications using each sing date imagery and various combinations of multi-temporal dataset were conducted. In the case of single date imagery, high classification accuracy was obtained in December when the planting was completed and March when garlic and onion started to grow vigorously. Meanwhile, higher classification accuracy was obtained when using multi-temporal dataset rather than single date imagery. However, more images did not guarantee higher classification accuracy. Rather, the imagery at the planting season or right after planting reduced classification accuracy. The highest classification accuracy was obtained when using the combination of March, April and May data corresponding the growth season of garlic and onion. Therefore, it is recommended to secure imagery at main growth season in order to classify garlic and onion field using multi-temporal satellite imagery.

Comparison of Three Land Cover Classification Algorithms -ISODATA, SMA, and SOM - for the Monitoring of North Korea with MODIS Multi-temporal Data

  • Kim, Do-Hyung;Jeong, Seung-Gyu;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.181-188
    • /
    • 2007
  • The objective of this research was to investigate the optimal land cover classification algorithm for the monitoring of North Korea with MODIS multi-temporal data based on monthly phenological characteristics. Three frequently used land cover classification algorithms, ISODATA1), SMA2), and SOM3) were employed for this study; the land cover categories were forest, grass, agricultural, wetland, barren, built-up, and water body. The outcomes of the study can be summarized as follows. First, the overall classification accuracy of ISODATA, SMA, and SOM was 69.03%, 64.28%, and 73.57%, respectively. Second, ISODATA and SMA resulted in a higher classification accuracy of forest and agricultural categories, but SOM performed better for the built-up area, bare soil, grassland, and water. A possible explanation for this difference would be related to the difference of sensitivity against the vegetation activity. This would be related to the capability of SOM to express all of their values without any loss of data by maintaining the topology between pixels of primitive data after classification, while ISODATA and SMA retain limited amount of data after normalization process. Third, we can conclude that SOM is the best algorithm for monitoring the land cover change of North Korea.

LAND COVER CLASSIFICATION BY USING SAR COHERENCE IMAGES

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.76-79
    • /
    • 2008
  • This study presents the use of multi-temporal JERS-1 SAR images to the land cover classification. So far, land cover classified by high resolution aerial photo and field survey and so on. The study site was located in Non-san area. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then classified land cover. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass

  • PDF

Landcover classification by coherence analysis from multi-temporal SAR images (다중시기 SAR 영상자료 긴밀도 분석을 통한 토지피복 분류)

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.132-137
    • /
    • 2009
  • This study has regard to classification by using multi-temporal SAR data. Multi-temporal JERS-1 SAR images are used for extract the land cover information and possibility. So far, land cover information extracted by high resolution aerial photo, satellite images, and field survey. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then extracted land cover information factors, so on. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass.

  • PDF

Feature Extraction and Classification of Multi-temporal SAR Data Using 3D Wavelet Transform (3차원 웨이블렛 변환을 이용한 다중시기 SAR 영상의 특징 추출 및 분류)

  • Yoo, Hee Young;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Kim, Yihyun
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.569-579
    • /
    • 2013
  • In this study, land-cover classification was implemented using features extracted from multi-temporal SAR data through 3D wavelet transform and the applicability of the 3D wavelet transform as a feature extraction approach was evaluated. The feature extraction stage based on 3D wavelet transform was first carried out before the classification and the extracted features were used as input for land-cover classification. For a comparison purpose, original image data without the feature extraction stage and Principal Component Analysis (PCA) based features were also classified. Multi-temporal Radarsat-1 data acquired at Dangjin, Korea was used for this experiment and five land-cover classes including paddy fields, dry fields, forest, water, and built up areas were considered for classification. According to the discrimination capability analysis, the characteristics of dry field and forest were similar, so it was very difficult to distinguish these two classes. When using wavelet-based features, classification accuracy was generally improved except built-up class. Especially the improvement of accuracy for dry field and forest classes was achieved. This improvement may be attributed to the wavelet transform procedure decomposing multi-temporal data not only temporally but also spatially. This experiment result shows that 3D wavelet transform would be an effective tool for feature extraction from multi-temporal data although this procedure should be tested to other sensors or other areas through extensive experiments.