• Title/Summary/Keyword: Multi-target estimation

Search Result 97, Processing Time 0.025 seconds

Robust AAM-based Face Tracking with Occlusion Using SIFT Features (SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적)

  • Eom, Sung-Eun;Jang, Jun-Su
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.355-362
    • /
    • 2010
  • Face tracking is to estimate the motion of a non-rigid face together with a rigid head in 3D, and plays important roles in higher levels such as face/facial expression/emotion recognition. In this paper, we propose an AAM-based face tracking algorithm. AAM has been widely used to segment and track deformable objects, but there are still many difficulties. Particularly, it often tends to diverge or converge into local minima when a target object is self-occluded, partially or completely occluded. To address this problem, we utilize the scale invariant feature transform (SIFT). SIFT is an effective method for self and partial occlusion because it is able to find correspondence between feature points under partial loss. And it enables an AAM to continue to track without re-initialization in complete occlusions thanks to the good performance of global matching. We also register and use the SIFT features extracted from multi-view face images during tracking to effectively track a face across large pose changes. Our proposed algorithm is validated by comparing other algorithms under the above 3 kinds of occlusions.

Estimation of Chinese Cabbage Growth by RapidEye Imagery and Field Investigation Data

  • Na, Sangil;Lee, Kyoungdo;Baek, Shinchul;Hong, Sukyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.556-563
    • /
    • 2015
  • Chinese cabbage is one of the most important vegetables in Korea and a target crop for market stabilization as well. Remote sensing has long been used as a tool to extract plant growth, cultivated area and yield information for many crops, but little research has been conducted on Chinese cabbage. This study refers to the derivation of simple Chinese cabbage growth prediction equation by using RapidEye derived vegetation index. Daesan-myeon area in Gochang-gun, Jeollabuk-do, Korea is one of main producing district of Chinese cabbage. RapidEye multi-spectral imagery was taken on the Daesan-myeon five times from early September to late October during the Chinese cabbage growing season. Meanwhile, field reflectance spectra and five plant growth parameters, including plant height (P.H.), plant diameter (P.D.), leaf height (L.H.), leaf length (L.L.) and leaf number (L.N.), were measured for about 20 plants (ten plants per plot) for each ground survey. The normalized difference vegetation index (NDVI) for each of the 20 plants was measured using an active plant growth sensor (Crop $Circle^{TM}$) at the same time. The results of correlation analysis between the vegetation indices and Chinese cabbage growth data showed that NDVI was the most suited for monitoring the L.H. (r=0.958~0.978), L.L. (r=0.950~0.971), P.H. (r=0.887~0.982), P.D. (r=0.855~0.932) and L.N. (r=0.718~0.968). Retrieval equations were developed for estimating Chinese cabbage growth parameters using NDVI. These results obtained using the NDVI is effective provided a basis for establishing retrieval algorithm for the biophysical properties of Chinese cabbage. These results will also be useful in determining the RapidEye multi-spectral imagery necessary to estimate parameters of Chinese cabbage.

Modeling for the fate of Organic Chemicals in a Multi-media Environment Using MUSEM (다매체 환경 모델 MUSEM을 이용한 유해화학물질의 환경거동예측 모델링)

  • Roh, Kyong-Joon;Kim, Dong-Myung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.201-210
    • /
    • 2007
  • Pollution by chemical substances such as POPs, EDCs and PBTs in the ecosystem has become more complex and varied, increasing the possibility of irreversible damage to human health or the ecosystem. It is necessary to have a exposure assessment in a multi-media environment for various chemical substances is required for efficient management. This study applied MUSEM(Multi-media Simplebox-systems Environmental Model), a multimedia environmental model that can simultaneously evaluate the possibility of exposure of hundreds of chemical substances in order to efficiently manage chemical substances that can have negative impact on human health or ecological environment through environmental contamination. MUSEM executed the modeling for Japan by setting all 47 prefectures of japan as the regional area for 62 chemical substances and the rest of the territory of japan, excluding regional area, as the continental area and made the estimation of concentration among environment media in each administrative area and made the sensitivity analysis on Tokyo area. The results of simulation for chemical distribution showed that most of the target chemicals located in water region. The result of sensitivity analysis for octanol-water partition rate showed that the concentration change of soil in urban/industrial area and sediment in freshwater was high. In the case of sensitivity analysis for degradation rate showed that the concentration change of freshwater, soil in urban/industrial area, and sediment in freshwater was high.

  • PDF

Numerical Modeling for the Detection of Debris Flow Using Detailed Soil Map and GIS (정밀토양도와 GIS를 이용한 토석류 발생지역 예측 분석)

  • Kim, Pan Gu;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.43-59
    • /
    • 2017
  • This study presents the prediction methodology of debris flow occurrence areas using the SINMAP model. Former studies used a single calibration region applying some of the soil test results to predict debris flow occurrence in SINMAP model, which couldn't subdivide the soil properties for the target areas. On the other hands, a multi-calibration region using a detailed soil map and soil strength parameters (c, ${\phi}$) for each soil series to make up for limitation of former studies is proposed. In this process, soils with soil erodibility factor (K) are classified into three types: 1) gravel and gravelly soil. 2) sand and sandy soil, and 3) silt and clay. In addition, T/R estimation method using mean elevation of target area instead of T/R method using actual occurrence time is suggested in this study. The suggested method is applied to Seobyeok-1 ri area, Bonghwa-gun where debris flow occurred. As a result of comparison between two T/R estimation method, both T/R estimations are almost equal. Therefore, the suggested methodologies in this study will contribute to set up the national-wide mitigation plan against debris flow occurrence.

Estimation of Shear Wave Velocity of Rockfill Zone by Dynamic Analysis using Micro-earthquake Records (미소지진 계측기록을 활용한 동적응답해석에 의한 댐 사력존 전단파속도 산정)

  • Ha, Ik Soo;Lee, Soo Gwun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.141-152
    • /
    • 2015
  • The objective of this study is to estimate shear wave velocity of rockfill materials by making practical use of the micro-earthquake records which are ordinarily obtained at a domestic rockfill dam and to verify its applicability. Micro-earthquake records were obtained at the site of Heongseong dam and Soyanggang dam, which are the existing multi-purpose dams in Korea. In the previous study, the fundamental periods of each dam were already evaluated by analyzing the response spectrum of the observed records. In this study, numerical analyses varying shear moduli of rockfill zone were carried out using the acceleration histories measured at the abutment as input ground motions. From comparison between the fundamental periods calculated by numerical analyses and measured records, the shear wave velocities with depth were estimated. It is found that the effect of different earthquake events on shear wave velocity estimation for the target dam materials is negligible and the shear wave velocity can be consistently evaluated. Furthermore, comparing the shear wave velocity with the previous researchers' empirical relationships and field test results, applicability of suggested method is verified. Therefore, in case that it is impossible to conduct field tests and estimation is preliminary, the suggested method can be practically used.

Development of a Novel Mobile Terminal Software Architecture supporting Energy Efficient Vertical Handover (에너지 효율적 이종망간 핸드오버를 지원하는 새로운 모바일 단말 소프트웨어 아키텍쳐 개발)

  • Park, Seung-Min;Kim, Won-Tae;Kim, Dae-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.10-23
    • /
    • 2009
  • In this paper we propose a novel mobile terminal software architecture supporting energy efficient handover operation in heterogeneous networks. Since the legacy proposals for L3 handover are mostly dependent on IETF Mobile IP which has some problems in movement detection mechanism and no considerations on nested heterogeneous network environment as a result they make serious overload on networks and terminals by performing unnecessary handover in such network environments. The proposed architecture has terminal-oriented network selection and switching architecture where a mobile terminal periodically monitors network status and selects the optimum network, and reduces energy consumption by making L3 handover of Mobile IP to the finally selected network. The network selection method first picks up some candidate networks by considering a terminal speed and power consumption estimation, and determines the final target handover network among the candidates after evaluating multiple factors including QoS required by a terminal, network status, user preference and terminal battery status. Finally we verify the functionality and performance of the energy efficient vertical handover architecture by means of adopting it into a real mobile terminal.

Stereo-To-Multiview Conversion System Using FPGA and GPU Device (FPGA와 GPU를 이용한 스테레오/다시점 변환 시스템)

  • Shin, Hong-Chang;Lee, Jinwhan;Lee, Gwangsoon;Hur, Namho
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.616-626
    • /
    • 2014
  • In this paper, we introduce a real-time stereo-to-multiview conversion system using FPGA and GPU. The system is based on two different devices so that it consists of two major blocks. The first block is a disparity estimation block that is implemented on FPGA. In this block, each disparity map of stereoscopic video is estimated by DP(dynamic programming)-based stereo matching. And then the estimated disparity maps are refined by post-processing. The refined disparity map is transferred to the GPU device through USB 3.0 and PCI-express interfaces. Stereoscopic video is also transferred to the GPU device. These data are used to render arbitrary number of virtual views in next block. In the second block, disparity-based view interpolation is performed to generate virtual multi-view video. As a final step, all generated views have to be re-arranged into a single image at full resolution for presenting on the target autostereoscopic 3D display. All these steps of the second block are performed in parallel on the GPU device.

Estimation of Corn Growth by Radar Scatterometer Data

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyoungdo;Na, Sangil;Jung, Gunho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.85-91
    • /
    • 2014
  • Ground-based polarimetric scatterometers have been effective tools to monitor the growth of crop with multi-polarization and frequencies and various incident angles. An important advantage of these systems that can be exploited is temporal observation of a specific crop target. Polarimetric backscatter data at L-, C- and X-bands were acquired every 10 minutes. We analyzed the relationships between L-, C- and X-band signatures, biophysical measurements over the whole corn growth period. The Vertical transmit and Vertical receive polarization (VV) backscattering coefficients for all bands were greater than those of the Horizontal transmit and Horizontal receive polarization (HH) until early-July, and then thereafter HH-polarization was greater than VV-polarization or Horizontal transmit and Vertical receive polarization (HV) until the harvesting stage (Day Of Year, DOY 240). The results of correlation analysis between the backscattering coefficients for all bands and corn growth data showed that L-band HH-polarization (L-HH) was the most suited for monitoring the fresh weight ($r=0.95^{***}$), dry weight ($r=0.95^{***}$), leaf area index ($r=0.86^{**}$), and vegetation water content ($r=0.93^{***}$). Retrieval equations were developed for estimating corn growth parameters using L-HH. The results indicated that L-HH could be used for estimating the vegetation biophysical parameters considered here with high accuracy. Those results can be useful in determining frequency and polarization of satellite Synthetic Aperture Radar stem and in designing a future ground-based microwave system for a long-term monitoring of corn.

Numerical Analysis on Penetration Reduction of a WHA Penetrator by an Impact of Linear Explosively Formed Penetrator(LEFP) (선형폭발성형탄(LEFP) 충격에 의한 WHA 관통자의 관통성능 감소에 관한 수치해석 연구)

  • Joo, Jaehyun;Choi, Joonhong;Koo, ManHoi;Kim, Dongkyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.384-392
    • /
    • 2017
  • A linear explosively formed penetrator(LEFP) is a modification of the explosively formed penetrator(EFP). An EFP is axisymmetric and has a dish-shaped liner while LEFP has a rectangular-shaped liner with curved cross section. Upon detonating LEFP forms laterally wide projectile like blade, leaving a long penetration hole on the target. On the other hand, a long-rod tungsten heavy alloy(WHA) penetrator is one of the major threats against most of the ground armored vehicles. In this paper, the feasibility of using an LEFP in protecting against a long-rod WHA penetrator by colliding LEFP into the threat was investigated through a set of numerical simulations. In this study, a scale-down WHA penetrator with length to diameter ratio(L/D) of 10.7 and 7.0 mm diameter was used to represent a long-rod WHA penetrator. LS-DYNA and Multi-Material ALE technique were employed for the simulation. For estimation of the protection effect by LEFP, residual penetration depths into RHA by the threat were compared according to various impact locations against the threat.

Comparative Analysis of Subsurface Estimation Ability and Applicability Based on Various Geostatistical Model (다양한 지구통계기법의 지하매질 예측능 및 적용성 비교연구)

  • Ahn, Jeongwoo;Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.31-44
    • /
    • 2014
  • In the present study, a few of recently developed geostatistical models are comparatively studied. The models are two-point statistics based sequential indicator simulation (SISIM) and generalized coupled Markov chain (GCMC), multi-point statistics single normal equation simulation (SNESIM), and object based model of FLUVSIM (fluvial simulation) that predicts structures of target object from the provided geometric information. Out of the models, SNESIM and FLUVSIM require additional information other than conditioning data such as training map and geometry, respectively, which generally claim demanding additional resources. For the comparative studies, three-dimensional fluvial reservoir model is developed considering the genetic information and the samples, as input data for the models, are acquired by mimicking realistic sampling (i.e. random sampling). For SNESIM and FLUVSIM, additional training map and the geometry data are synthesized based on the same information used for the objective model. For the comparisons of the predictabilities of the models, two different measures are employed. In the first measure, the ensemble probability maps of the models are developed from multiple realizations, which are compared in depth to the objective model. In the second measure, the developed realizations are converted to hydrogeologic properties and the groundwater flow simulation results are compared to that of the objective model. From the comparisons, it is found that the predictability of GCMC outperforms the other models in terms of the first measure. On the other hand, in terms of the second measure, the both predictabilities of GCMC and SNESIM are outstanding out of the considered models. The excellences of GCMC model in the comparisons may attribute to the incorporations of directional non-stationarity and the non-linear prediction structure. From the results, it is concluded that the various geostatistical models need to be comprehensively considered and comparatively analyzed for appropriate characterizations.