• Title/Summary/Keyword: Multi-target estimation

Search Result 97, Processing Time 0.027 seconds

Effective Elimination of False Alarms by Variable Section Size in CFAR Algorithm (CFAR 적용시 섹션 크기 가변화를 이용한 오표적의 효율적 제거)

  • Roh, Ji-Eun;Choi, Beyung-Gwan;Lee, Hee-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.100-105
    • /
    • 2011
  • Generally, because received signals from radar are very bulky, the data are divided into manageable size called section, and sections are distributed into several digital signal processors. And then, target detection algorithms are applied simultaneously in each processor. CFAR(Constant False Alarm Rate) algorithm, which is the most popular target detection algorithm, can estimate accurate threshold values to determine which signals are targets or noises within center-cut of section allocated to each processor. However, its estimation precision is diminished in section edge data because of insufficient surrounding data to be referred. Especially this edge problem of CFAR is too serious if we have many sections to be processed, because it causes many false alarms in most every section edges. This paper describes false alarm issues on MCA(Minimum Cell Average)-CFAR, and proposes a false alarm elimination method by changing section size alternatively. Real received data from multi-function radar were used to evaluate a proposed method, and we show that our method drastically decreases false alarms without missing real targets, and improves detection performance.

Estimation of Drone Velocity with Sum of Absolute Difference between Multiple Frames (다중 프레임의 SAD를 이용한 드론 속도 측정)

  • Nam, Donho;Yeom, Seokwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.3
    • /
    • pp.171-176
    • /
    • 2019
  • Drones are highly utilized because they can efficiently acquire long-distance videos. In drone operation, the speed, which is the magnitude of the velocity, can be set, but the moving direction cannot be set, so accurate information about the drone's movement should be estimated. In this paper, we estimate the velocity of the drone moving at a constant speed and direction. In order to estimate the drone's velocity, the displacement of the target frame to minimize the sum of absolute difference (SAD) of the reference frame and the target frame is obtained. The ground truth of the drone's velocity is calculated using the position of a certain matching point over all frames. In the experiments, a video was obtained from the drone moving at a constant speed at a height of 150 meters. The root mean squared error (RMSE) of the estimated velocities in x and y directions and the RMSE of the speed were obtained showing the reliability of the proposed method.

Wrist and Grasping Forces Estimation using Electromyography for Robotic Prosthesis (근전도 신호를 이용한 손목 힘 및 악력 추정)

  • Kim, Young-Jin;Lee, Dong-Hyuk;Park, Hyeonjun;Park, Jae-Han;Bae, Ji-Hun;Baeg, Moon-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.206-216
    • /
    • 2017
  • This paper proposes a method to simultaneously estimate two degrees of freedom in wrist forces (extension - flexion, adduction - abduction) and one degree of freedom in grasping forces using Electromyography (EMG) signals of the forearms. To correlate the EMG signals with the forces, we applied a multi - layer perceptron(MLP), which is a machine learning method, and used the characteristics of the muscles constituting the forearm to generate learning data. Through the experiments, the similarity between the MLP target value and the estimated value was investigated by applying the coefficient of determination ($R^2$) and root mean square error (RMSE) to evaluate the performance of the proposed method. As a result, the $R^2$ values with respect to the wrist flexion-extension, adduction - abduction and grasping forces were 0.79, 0.73 and 0.78 and RMSE were 0.12, 0.17, 0.13 respectively.

Estimating Interest Levels based on Visitor Behavior Recognition Towards a Guide Robot (안내 로봇을 향한 관람객의 행위 인식 기반 관심도 추정)

  • Ye Jun Lee;Juhyun Kim;Eui-Jung Jung;Min-Gyu Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.463-471
    • /
    • 2023
  • This paper proposes a method to estimate the level of interest shown by visitors towards a specific target, a guide robot, in spaces where a large number of visitors, such as exhibition halls and museums, can show interest in a specific subject. To accomplish this, we apply deep learning-based behavior recognition and object tracking techniques for multiple visitors, and based on this, we derive the behavior analysis and interest level of visitors. To implement this research, a personalized dataset tailored to the characteristics of exhibition hall and museum environments was created, and a deep learning model was constructed based on this. Four scenarios that visitors can exhibit were classified, and through this, prediction and experimental values were obtained, thus completing the validation for the interest estimation method proposed in this paper.

Calibration of a UAV Based Low Altitude Multi-sensor Photogrammetric System (UAV기반 저고도 멀티센서 사진측량 시스템의 캘리브레이션)

  • Lee, Ji-Hun;Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.31-38
    • /
    • 2012
  • The geo-referencing accuracy of the images acquired by a UAV based multi-sensor system is affected by the accuracy of the mounting parameters involving the relationship between a camera and a GPS/INS system as well as the performance of a GPS/INS system. Therefore, the estimation of the accurate mounting parameters of a multi-sensor system is important. Currently, we are developing a low altitude multi-sensor system based on a UAV, which can monitor target areas in real time for rapid responses for emergency situations such as natural disasters and accidents. In this study, we suggest a system calibration method for the estimation of the mounting parameters of a multi-sensor system like our system. We also generate simulation data with the sensor specifications of our system, and derive an effective flight configuration and the number of ground control points for accurate and efficient system calibration by applying the proposed method to the simulated data. The experimental results indicate that the proposed method can estimate accurate mounting parameters using over five ground control points and flight configuration composed of six strips. In the near future, we plan to estimate mounting parameters of our system using the proposed method and evaluate the geo-referencing accuracy of the acquired sensory data.

Performance enhancement of launch vehicle tracking using GPS-based multiple radar bias estimation and sensor fusion (GPS 기반 추적레이더 실시간 바이어스 추정 및 비동기 정보융합을 통한 발사체 추적 성능 개선)

  • Song, Ha-Ryong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.6
    • /
    • pp.47-56
    • /
    • 2015
  • In the multi-sensor system, sensor registration errors such as a sensor bias must be corrected so that the individual sensor data are expressed in a common reference frame. If registration process is not properly executed, large tracking errors or formation of multiple track on the same target can be occured. Especially for launch vehicle tracking system, each multiple observation lies on the same reference frame and then fused trajectory can be the best track for slaving data. Hence, this paper describes an on-line bias estimation/correction and asynchronous sensor fusion for launch vehicle tracking. The bias estimation architecture is designed based on pseudo bias measurement which derived from error observation between GPS and radar measurements. Then, asynchronous sensor fusion is adapted to enhance tracking performance.

DOD/DOA Estimation for Bistatic MIMO Radar Using 2-D Matrix Pencil Method (2차원 Matrix Pencil Method 기반의 바이스태틱 MIMO 레이더 표적 도래각 추정)

  • Lee, Kang-In;Kang, Wonjune;Yang, Hoon-Gee;Chung, Wonzoo;Kim, Jong Mann;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.7
    • /
    • pp.782-790
    • /
    • 2014
  • In this paper, we apply the 2-D Matrix Pencil Method(MPM) to the estimation of the direction of arrival(DOA) of multiple signals of interest(SOIs) in bistatic MIMO radar. The 2-D MPM shows remarkable performance under a low SNR environment and low computational complexity to estimate the DOA of multiple SOIs. Also, it is possible to estimate the direction of departure(DOD) which is an angle from transmitter to target. To verify the proposed algorithm, we applied the proposed algorithm to a uniformly spaced linear array(ULA) and compared the RMSE(Root Mean Square Error) of DOA and DOD under the various SNR with those of the 2-D Capon algorithm.

People Tracking Method with Distributed Laser Scanner and Its Application to Entrance Monitoring System (분산배치된 레이저 스캐너를 이용한 사람추적방법 및 출입감시시스템에의 응용)

  • Lee, Jae-Hoon;Kim, Yong-Shik;Kim, Bong-Keun;Ohba, Kohtaro;Kawata, Hirohiko;Ohya, Akihisa;Yuta, Shin'ich
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.130-138
    • /
    • 2009
  • Recently, people tracking technology is being required to various area including security application. This paper suggests a method to track people with multiple laser scanners to detect the waist part of human. Multi-target model and Kalman filter based estimation are employed to track the human movement. The proposed method is applied to a novel system to monitor the entrance area and to filter out the trespasser to pass through the door without identification. Experiments for various cases are performed to verify the usefulness of the developed system.

  • PDF

Automatic Mutual Localization of Swarm Robot Using a Particle Filter

  • Lee, Yang-Weon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.390-395
    • /
    • 2012
  • This paper describes an implementation of automatic mutual localization of swarm robots using a particle filter. Each robot determines the location of the other robots using wireless sensors. The measured data will be used for determination of the movement method of the robot itself. It also affects the other robots' self-arrangement into formations such as circles and lines. We discuss the problem of a circle formation enclosing a target that moves. This method is the solution for enclosing an invader in a circle formation based on mutual localization of the multi-robot without infrastructure. We use trilateration, which does require knowing the value of the coordinates of the reference points. Therefore, specifying the enclosure point based on the number of robots and their relative positions in the coordinate system. A particle filter is used to improve the accuracy of the robot's location. The particle filter is operates better for mutual location of robots than any other estimation algorithms. Through the experiments, we show that the proposed scheme is stable and works well in real environments.

Passive Range Estimation Based on Towed Line Array in Multi-Target Environment (다중 음원 환경에서의 수동 거리 추정)

  • 양인식;김준환;김기만
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.367-370
    • /
    • 2000
  • Various methods of enhancing the performance of passive range sonar arrays have been discussed, triangulation, wavefront curvature method etc. But they are not appropriate to the methods because of very low SNR in underwater environment. We made appropriate sub-arrays in a linear array and applied to the beamformers such as a minimum variance with null constraints.

  • PDF