Estimation of Drone Velocity with Sum of Absolute Difference between Multiple Frames

다중 프레임의 SAD를 이용한 드론 속도 측정

  • Nam, Donho (School of Computer and Communication Engineering, Daegu University) ;
  • Yeom, Seokwon (School of Computer and Communication Engineering, Daegu University)
  • 남돈호 (대구대학교 정보통신공학부) ;
  • 염석원 (대구대학교 정보통신공학부)
  • Received : 2019.09.18
  • Accepted : 2019.09.30
  • Published : 2019.09.30

Abstract

Drones are highly utilized because they can efficiently acquire long-distance videos. In drone operation, the speed, which is the magnitude of the velocity, can be set, but the moving direction cannot be set, so accurate information about the drone's movement should be estimated. In this paper, we estimate the velocity of the drone moving at a constant speed and direction. In order to estimate the drone's velocity, the displacement of the target frame to minimize the sum of absolute difference (SAD) of the reference frame and the target frame is obtained. The ground truth of the drone's velocity is calculated using the position of a certain matching point over all frames. In the experiments, a video was obtained from the drone moving at a constant speed at a height of 150 meters. The root mean squared error (RMSE) of the estimated velocities in x and y directions and the RMSE of the speed were obtained showing the reliability of the proposed method.

드론은 원거리 동영상을 효율적으로 획득할 수 있어서 활용성이 높다. 드론 운용에서 속도의 크기인 속력은 설정할 수 있지만 이동하는 방위의 정확한 값은 설정이 불가능하다. 본 논문에서는 드론에서 획득한 동영상을 이용하여 일정한 속도로 이동하는 드론의 속도를 추정한다. 기준 프레임과 표적 프레임의 Sum of Absolute Difference(SAD)를 최소로 하는 표적 프레임의 변위를 구한다. 드론의 실제 속도(Ground Truth)는 각 프레임에서 일정한 동일 지점(Matching Point)의 위치를 이용하여 계산한다. 실험에서 150m 상공에서 일정한 속력으로 이동하는 드론으로 동영상을 획득하였다. 추정한 x와 y방향의 속도와 속력의 평균 제곱근 오차(RMSE)를 구하여 제안한 방법의 신뢰성을 보였다.

Keywords

References

  1. S. Minaeian, J. Liu, and Y.-J. Son, "Vision-Based Target Detection and Localization via a Team of Cooperative UAV and UGVs," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 7, pp. 1005-1016, 2016. https://doi.org/10.1109/TSMC.2015.2491878
  2. V. V. Klemas, "Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview,"Journal of Coastal Research, vol. 31, no. 5, pp. 1260-1267, 2015. https://doi.org/10.2112/JCOASTRES-D-15-00005.1
  3. M.-H. Lee and S. Yeom, "Detection and Tracking of Multiple Moving Vehicles with a UAV," International Journal of Fuzzy Logic and Intelligent Systems, vol. 18, no. 3, pp. 182-189, 2018. http://doi.org/10.5391/IJFIS.2018.18.3.182.
  4. M.-H. Lee and S. Yeom, "Moving Target Detection based on Frame Subtraction and Morphological Filtering with Drone Imaging," Korea Institute of Convergence Signal Processing, vol. 19, no. 4, pp. 192-198, 2018.
  5. S. Yeom and I.-J. Cho, "Detection and Tracking of Moving Pedestrians with a Small Unmanned Aerial Vehicle,"Applied Science, vol. 9, no. 16, pp. 1-21, 2019.
  6. A. Sotiras, C. Davatzikos, and N. Paragios, "Deformable Medical Image Registration: A Survey," IEEE Trans. on Medical Imaging, vol. 32, no. 7, pp. 1153-1190, 2013. https://doi.org/10.1109/TMI.2013.2265603
  7. J. LeMoigne, N. S. Netanyahu, and R. D. Eastman, Image Registration for Remote Sensing, ed. Cambridge, UK:Cambridge University Press, 2010.
  8. Y. Wang, R. Schultz, and R. Fevig, "Sensor fusion method using GPS/IMU data for fast UAV surveillance video frame registration," IEEE, pp. 985-988, 2009.
  9. M. Tico and K. Pulli, "Robust Image Registration for Multi-frame Mobile Applications," IEEE, pp. 860-864, 2010.