• Title/Summary/Keyword: Multi-target

Search Result 1,402, Processing Time 0.029 seconds

SDRE controller considering Multi Observer applied to nonlinear IPMC model

  • Bernat, Jakub;Kolota, Jakub;Stepien, Slawomir
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Ionic Polymer Metal Composite (IPMC) is an electroactive polymer (EAP) and a promising candidate actuator for various potential applications mainly due to its flexible, low voltage/power requirements, small and compact design, and lack of moving parts. Although widely used in industry, this material requires accurate numerical models and knowledge of optimal control methods. This paper presents State-Dependent Riccati Equation (SDRE) approach as one of rapidly emerging methodologies for designing nonlinear controllers. Additionally, the present paper describes a novel method of Multi HGO Observer design. In the proposed design, the calculated position of the IPMC strip accurately tracks the target position, which is illustrated by the experiments. Numerical results and comparison with experimental data are presented and the effectiveness of the proposed control strategy is verified in experiments.

Topology Optimization of Plane Structures using Modal Strain Energy for Fundamental Frequency Maximization

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • This paper describes a topology optimization technique which can maximize the fundamental frequency of the structures. The fundamental frequency maximization is achieved by means of the minimization of modal strain energy as an inverse problem so that the strain energy based resizing algorithm is directly used in this study. The strain energy to be minimized is therefore employed as the objective function and the initial volume of structures is used as the constraint function. Multi-frequency problem is considered by the introduction of the weight which is used to combine several target modal strain energy terms into one scalar objective function. Several numerical examples are presented to investigate the performance of the proposed topology optimization technique. From numerical tests, it is found to be that the proposed optimization technique is extremely effective to maximize the fundamental frequency of structure and can successfully consider the multi-frequency problems in the topology optimization process.

On the Opimal Decision Making using the Eigenvector Methods (고유벡터 법을 이용한 최적 의사결정에 관한 연구)

  • Chung Soon-Suk
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2006.04a
    • /
    • pp.123-131
    • /
    • 2006
  • Multi-criteria decision making is deducing the relative importance in the criterion of decision making and each alternative which is able to making a variety of choices measures the preferred degree in the series of low-raking criterions. Moreover, this is possible by synthesizing them systematically. In general, a fundamental problem decision maker solve for multi-criteria decision making is evaluating a set of activities which are considered as the target logically, and this kind of work is evaluated and synthesized by various criterions of the value which a chain of activities usually hold in common. In this paper, we are the eigenvector methods in weights calculating. For the purpose of making optimal decision, the data of five different car models are used. For computing, we used Visual Numerica Version 1.0 software package.

  • PDF

Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.527-538
    • /
    • 2010
  • This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified.

Path Planning for Parking using Multi-dimensional Path Grid Map (다차원 경로격자지도를 이용한 주차 경로계획 알고리즘)

  • Choi, Jong-An;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.152-160
    • /
    • 2017
  • Recent studies on automatic parking have actively adopted the technology developed for mobile robots. Among them, the path planning scheme plans a route for a vehicle to reach a target parking position while satisfying the kinematic constraints of the vehicle. However, previous methods require a large amount of computation and/or cannot be easily applied to different environmental conditions. Therefore, there is a need for a path planning scheme that is fast, efficient, and versatile. In this study, we use a multi-dimensional path grid map to solve the above problem. This multi-dimensional path grid map contains a route which has taken a vehicle's kinematic constraints into account; it can be used with the $A^*$ algorithm to plan an efficient path. The proposed method was verified using Prescan which is a simulation program based on MATLAB. It is shown that the proposed scheme can successfully be applied to both parallel and vertical parking in an efficient manner.

The Optimal Allocation Model for SAM Using Multi-Heuristic Algorithm : Focused on Aircraft Defense (복합 휴리스틱 알고리즘을 이용한 지대공 유도무기 최적배치 모형 : 항공기 방어를 중심으로)

  • Kwak, Ki-Hoon;Lee, Jae-Yeong;Jung, Chi-Young
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.43-56
    • /
    • 2009
  • In korean peninsular, aircraft defense with SAM (Surface-to-Air Missile) is very important because of short range of combat space in depth. Effective and successful defense operation largely depends on two factors, SAM's location and the number of SAM for each target based on missile's availability in each SAM's location. However, most previous papers have handled only the former. In this paper, we developed Set covering model which can handle both factors simultaneously and Multi-heuristic algorithm for solving allocation problem of the batteries and missile assignment problem in each battery. Genetic algorithm is used to decide optimal location of the batteries. To determine the number of SAM, a heuristic algorithm is applied for solving missile assignment problem. If the proposed model is applied to allocation of SAM, it will improve the effectiveness of air defense operations.

New Texture Prediction for Multi-view Video Coding

  • Park, Ji-Ho;Kim, Yong-Hwan;Choi, Byeong-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1508-1511
    • /
    • 2007
  • This paper introduces a new texture prediction for MVC( Multi-view Video Coding) which is currently being developed as an extension of the ITU-T Recommendation H.264 | ISO/IEC International Standard ISO/IEC 14496-10 AVC (Advanced Video Coding) [1]. The MVC's prcimary target is 3D video compression for 3D display system, thus, key technology compared to 2D video compression is reducing inter-view correlation. It is noticed, however, that the current JMVM [2] does not effectively eliminate inter-view correlation so that there is still a room to improve coding efficiency. The proposed method utilizes similarity of interview residual signal and can provide an additional coding gain. It is claimed that up to 0.2dB PSNR gain with 1.4% bit-rate saving is obtained for three multi-view test sequences.

  • PDF

Automatic Generation of Analysis Model Using Multi-resolution Modeling Algorithm (다중해상도 알고리즘을 이용한 자동 해석모델 생성)

  • Kim M.C.;Lee K.W.;Kim S.C.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.172-182
    • /
    • 2006
  • This paper presents a method to convert 3D CAD model to an appropriate analysis model using wrap-around, smooth-out and thinning operators that have been originally developed to realize the multi-resolution modeling. Wrap-around and smooth-out operators are used to simplify 3D model, and thinning operator is to reduce the dimension of a target object with simultaneously decomposing the simplified 3D model to 1D or 2D shapes. By using the simplification and dimension-reduction operations in an appropriate way, the user can generate an analysis model that matches specific applications. The advantage of this method is that the user can create optimized analysis models of various simplification levels by selecting appropriate number of detailed features and removing them.

Optimization of input carrier powers considering satellite link environment in the multi-level SCPC systems (Multi-level SCPC 시스템에서 링크환경을 고려한 중계기 입력반송파 전력의 최적화)

  • 김병균;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1240-1255
    • /
    • 1996
  • This paper suggests power optimization technique in multi-level SCPC system as a method for efficient utilization of limited satellite power. The power optimization is realized by optimal assignment of satellite input carrier powers considering interference and noise generated in up-link and down-link. The Fletcher-Powell algorithm searching minimum(or maximum) point using gradient information is used to detemine the optimal input carrier powers. To apply Flectcher-Powell algorithm mathematical descriptions and their partial derivatives to interference and nose are presented. Because a target, which should be optimized, is satellite input carrier power, amplitude of each carrier group will be assumed to be an independent variable. The performance criterion for optimal power assignmentis classified into 4 categories with respect to CNR of destination receiver earth station to meet the requirement for various satellite link environment. Simulation results for two-level, four-level and six-level SCPC system are presented.

  • PDF

Up/Downlink Hybrid Inter-Cell Coordination Patterns of the TDD/MC-CDMA System, TDD/MC-CDMA

  • Han, Sang-Jin;Lee, Sung-Jin;Lee, Sang-Hoon;Gil, Gye-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5A
    • /
    • pp.421-428
    • /
    • 2009
  • Inter-cell coordination has been an emerging issue for mitigating inter-cell interference in broadband wireless access networks such as IEEE802.16 and 3GPP LTE (Long Term Evolution). This paper proposes uplink/downlink hybrid inter-cell coordination patterns for a TDD (Time Division Duplex)/MC-CDMA (Multi-Carrier Code Division Multiple Access) system. For the performance analysis, closed forms of inter-cell interferences are derived when uplink and downlink transmissions coexist over a multi-cell environment. In the analysis, we find an optimal ratio of downlink transmit powers of BSs (Base Stations) based on the target outage probability and the performance according to ratios of uplink/downlink transmit powers of MSs (Mobile Stations)/BSs is explored. Our numerical results show that interference mitigation utilizing the characteristics of the uplink and downlink power ratio is very effective in improving system performance in terms of QoS.