• Title/Summary/Keyword: Multi-step method

Search Result 644, Processing Time 0.043 seconds

Multi-step wind speed forecasting synergistically using generalized S-transform and improved grey wolf optimizer

  • Ruwei Ma;Zhexuan Zhu;Chunxiang Li;Liyuan Cao
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.461-475
    • /
    • 2024
  • A reliable wind speed forecasting method is crucial for the applications in wind engineering. In this study, the generalized S-transform (GST) is innovatively applied for wind speed forecasting to uncover the time-frequency characteristics in the non-stationary wind speed data. The improved grey wolf optimizer (IGWO) is employed to optimize the adjustable parameters of GST to obtain the best time-frequency resolution. Then a hybrid method based on IGWO-optimized GST is proposed to validate the effectiveness and superiority for multi-step non-stationary wind speed forecasting. The historical wind speed is chosen as the first input feature, while the dynamic time-frequency characteristics obtained by IGWO-optimized GST are chosen as the second input feature. Comparative experiment with six competitors is conducted to demonstrate the best performance of the proposed method in terms of prediction accuracy and stability. The superiority of the GST compared to other time-frequency analysis methods is also discussed by another experiment. It can be concluded that the introduction of IGWO-optimized GST can deeply exploit the time-frequency characteristics and effectively improving the prediction accuracy.

Development of Optimization Method for Anti-Submarine Searching Pattern Using Genetic Algorithm (유전자 알고리즘을 이용한 대잠 탐색패턴 최적화 기법 개발)

  • Kim, Moon-Hwan;Sur, Joo-No;Park, Pyung-Jong;Lim, Se-Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • It is hard to find an operation case using anti-submarine searching pattern(ASSP) developed by Korean navy since Korean navy has begun submarine searching operation. This paper proposes the method to develop hull mount sonar(HMS) based optimal submarine searching pattern by using genetic algorithm. Developing the efficient ASSP based on theory in near sea environment has been demanded for a long time. Submarine searching operation can be executed by using ma ulti-step and multi-layed method. however, In this paper, we propose only HMS based ASSP generation method considering the ocean environment and submarine searching tactics as a step of first research. The genetic algorithm, known as a global opination method, optimizes the parameters affecting efficiency of submarine searching operation. Finally, we confirm the performance of the proposed ASSP by simulation.

SHIP DETECTION APPROACH BASED ON CROSSCORRELATION FROM DUAL-POLARIZATION DATA (ASAR AP 다중편파 및 MULTI-LOOK 에 의한 선박탐지 연구)

  • Yang, Chan-Su;Ouchi, Kazuo
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.180-184
    • /
    • 2008
  • Preliminary results are reported on ship detection using coherence images computed from crosscorrelating images of multi-look-processed dual-polarization data (HH and HV) of ENVISAT ASAR. The traditional techniques of ship detection by radars such as CFAR (Constant False Alarm Rate) rely on the amplitude data, and therefore the detection tends to become difficult when the amplitudes of ships images are at similar level as the mean amplitude of surrounding sea clutter. The proposed method utilizes the property that the multi-look images of ships are correlated with each other. Because the inter-look images of sea surface are covered by uncorrelated speckle, crosscorrelation of multi-look images yields the different degrees of coherence between the images and water. The polarimetric information of ships, land and intertidal zone are first compared based on the cross-correlation between HH and HV. In the next step, we examine the technique when the dual-polarization data are split into two multi-look images.

  • PDF

A Study on the Stability of the Single-Layer Latticed Dome during Erection Using the Step-Up Method (Step-Up 공법에 의한 단층래티스돔의 시공시 안정성 연구)

  • Koo, Choong-Mo;Jung, Hwan-Mok;Kim, Cheol-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.4
    • /
    • pp.109-118
    • /
    • 2012
  • The large-space single-layer lattice dome is relatively simpler in terms of the arrangement of the various framework members and of the design of the junction than the multi-layered lattice dome, can reduce the numbers and quantity of the framework members, and has the merit of exposing the beauty of the framework as it stands. The single-layer lattice dome, however, requires a stability investigation of the whole structure itself, along with an analysis of the stress of the framework members, because an unstable phenomenon called "buckling" occurs when its weight reaches critical levels. Many researchers have systematically conducted researches on the stability evaluation of the single-layer lattice dome. No construction case of a single-layer lattice dome with a 300-m-long span, however, has yet been reported anywhere in the world. The large-space dome structure is difficult to erect due to the gigantic span and higher ceiling compared with other common buildings, and its construction cost is generally huge. The method of erecting a structure causes major differences in the construction cost and period. Therefore, many researchers have been conducting various researches on the method of erecting such structure. The step-up method developed by these authors can reduce the construction cost and period to a great extent compared with the other general methods, but the application of this method inevitably requires the development of system supports in the center section as well as pre-existing supports in the boundary sections. In this research, the safety during the construction of a single-layer lattice dome with 300-m-long span using pre-existing materials was examined in the aspect of structural strength, and the basic data required for manufacturing the supports in the application of the step-up method developed by these authors during the erection of the roof structure were obtained.

A Development of Arrival Scheduling and Advisory Generation Algorithms based on Point-Merge Procedure (Point-Merge 절차를 이용한 도착 스케줄링 및 조언 정보 생성 알고리즘 개발)

  • Hong, Sungkweon;Kim, Soyeun;Jeon, Daekeun;Eun, Yeonju;Oh, Eun-Mi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.44-50
    • /
    • 2017
  • This paper proposes arrival scheduling and advisory generation algorithms which can be used in the terminal airspace with Point-Merge procedures. The proposed scheduling algorithm consists of two steps. In the first step, the algorithm computes aircraft schedules at the entrance of the Point-Merge sequencing legs based on First-Come First-Served(FCFS) strategy. Then, in the second step, optimal sequence and schedules of all aircraft at the runway are computed using Multi-Objective Dynamic Programming(MODP) method. Finally, the advisories that have to be provided to the air traffic controllers are generated. To demonstrate the proposed algorithms, the simulation was conducted based on Jeju International Airport environments.

Calculations of 3D Euler Flows around an Isolated Engine/Nacelle (비장착 엔진/나셀 형상에 대한 3차원 Euler 유동 해석)

  • Kim S. M.;Yang S. S.;Lee D. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.51-58
    • /
    • 1997
  • A reliable computational solver has been developed for the analysis of three-dimensional inviscid compressible flows around a nacelle of a high bypass ratio turbofan engine, The numerical algorithm is based on the modified Godunov scheme to allow the second order accuracy for space variables, while keeping the monotone features. Two step time integration is used not only to remove time step limitation but also to provide the second order accuracy in a time variable. The multi-block approach is employed to calculate the complex flow field, using an algebraic, conformal, and elliptic method. The exact solution of Riemann problem is used to define boundary conditions. The accuracy of the developed solver is validated by comparing its results around the isolated nacelle in the cruise flight regime with the solution obtained using a commercial code "RAMPANT. "

  • PDF

The Optimal Spare Level of a Weapon System having Phase-type Repair Time (Phase-type 수리시간을 갖는 무기체계의 적정예비품수 결정)

  • Yoon, Hyouk;Lee, Sang-Jin
    • Korean Management Science Review
    • /
    • v.26 no.3
    • /
    • pp.145-156
    • /
    • 2009
  • The probability distribution of the repair process should be determined to choose the optimal spare level of a weapon system with a queueing model. Though most weapon systems have a multi-step repair process, previous studies use the exponential distribution for the multi-step repair process. But the PH distribution is more appropriate for this case. We utilize the PH distribution on a queueing model and solve it with MGM(Matrix Geometric Method). We derive the optimal spare level using the PH distribution and show the difference of results between the PH and exponential distribution.

A Study on the shape Design of the Forward Forming Region in Cross Rolling of Multi-Step Shaft (다단 샤프트 제조용 크로스롤 금형 선단부의 형상설계에 관한 연구)

  • 김익삼
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.178-187
    • /
    • 1999
  • The Cross rolling between flat jaws, as a kind of hot forging, is the forming method to make the axisymmetric multi-step shaft by its rotation and pressure between flat jaws which move in opposite direction. The purpose of this study is to propose the optimal geometric data for shape development of the forward forming region. All data described on this paper are quantified by experiment from initial shape design to final shape development. As the result, proper geometric data are proved that lenth of the first forming area in the forward forming region is 1.5 times larger than circumference of work-piece and the progress angle changes 3 times smoothly.

  • PDF

SOME MULTI-STEP ITERATIVE SCHEMES FOR SOLVING NONLINEAR EQUATIONS

  • Rafiq, Arif;Pasha, Ayesha Inam;Lee, Byung-Soo
    • The Pure and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.277-286
    • /
    • 2013
  • In this paper, we suggest and analyze a family of multi-step iterative methods which do not involve the high-order differentials of the function for solving nonlinear equations using a different type of decomposition (mainly due to Noor and Noor [15]). We also discuss the convergence of the new proposed methods. Several numerical examples are given to illustrate the efficiency and the performance of the new iterative method. Our results can be considered as an improvement and refinement of the previous results.