• Title/Summary/Keyword: Multi-step Forming

Search Result 55, Processing Time 0.033 seconds

Process Design of Multi-Step Drawing using Artificial Neural Network (신경망을 이용한 다단 인발의 공정설계)

  • 김동환;김동진;김병민;최재찬
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.144-147
    • /
    • 1997
  • Process design of multi-step wire drawing process, conducted by means of finite element analysis and ANN(Artificial Neural Network), has been considered. The investigated problem involves the adequate selection of the drawing die angle and the correspondent reduction rate sequence in the condition of desired initial and final diameter. Combinations of the process parameters which are used in finite element simulation are selected by using orthogonal array. Also the orthogonal array and the results of finite element simulation which are related to the process energy are used as train data of ANN. In this study, it is shown that the new technique using ANN is useful method in application to the wide range of metal forming process.

  • PDF

Elastic-Plastic Finite Element Analysis of the Roll Forming Process for an Automotive Part of High Strength Steel (고강도강 자동차 부품의 롤 성형 공정의 탄소성 유한요소해석)

  • Kim K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.480-483
    • /
    • 2005
  • A roll forming process is developed for an automotive part of high strength steel. Forming rolls are designed through the plane strain elastic-plastic finite element analysis to estimate the springback. It is assumed that the process can be approximated as a series of multi-step bending processes. Then the 3D elastic-plastic finite element analysis with the solid element is carried out for the designed roll forming process. The prototype roll forming machine and the forming rolls are made and the experiments are carried out. The results of the analysis and the experiments are compared.

  • PDF

Development of Roll Forming Process for an Automotive Part of High Strength Steel (고강도강 자동차 부품 생산을 위한 롤 성형 공정 개발)

  • Kim, Kwang-Heui;Sim, Sung-Bo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.45-50
    • /
    • 2005
  • A roll forming process for an automotive part of high strength steel is developed. The preliminary flower is generated semi-automatically by an AutoLISP program. The roll forming process is approximated as a multi-step bending process and the preliminary flower is analyzed by the plane strain finite element method. Then, the first flower is selected and modified through the finite element analysis. With the final flower, forming rolls are designed and constructed. Experiments are carried out on a prototype roll forming machine.

  • PDF

Improvement for Hearing Aids System Using Adaptive Beam-forming Algorithm (적응 빔포밍 기법을 적용한 보청기 시스템의 성능 향상에 관한 연구)

  • 이채욱;오신범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.5C
    • /
    • pp.673-682
    • /
    • 2004
  • The adaptive beam-forming is promising approach for noise reduction in hearing aids. This approach has come in the focus of interest only recently, because of the availability of new and powerful digital signal processors. The adaptation U using usually a Least Mean Squares algorithm, updates the weight vector. In this Paper, we propose a fast wavelet based adaptive algorithm using variable step size algorithm which varies adaptive constant by the change of signal environment. We compared the performance of the proposed algorithm with the known adaptive algorithm using computer simulation of multi channel adaptive bemformer in hearing aids. As the result the proposed algorithm is suitable for adaptive signal processing area using hearing aids and has advantages reducing computational complexity. And we show the beam-forming system using proposed algorithm converges stably in a sudden change of system environment.

Detection of Defects on Repeated Multi-Patterned Images (반복되는 다수 패턴 영상에서의 불량 검출)

  • Lee, Jang-Hee;Yoo, Suk-In
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.5
    • /
    • pp.386-393
    • /
    • 2010
  • A defect in an image is a set of pixels forming an irregular shape. Since a defect, in most cases, is not easy to be modeled mathematically, the defect detection problem still resides in a research area. If a given image, however, composed by certain patterns, a defect can be detected by the fact that a non-defect area should be explained by another patch in terms of a rotation, translation, and noise. In this paper, therefore, the defect detection method for a repeated multi-patterned image is proposed. The proposed defect detection method is composed of three steps. First step is the interest point detection step, second step is the selection step of a appropriate patch size, and the last step is the decision step. The proposed method is illustrated using SEM images of semiconductor wafer samples.

Automatic Process Design System for Cold Forging of Fasteners with Various Head Geometries (다양한 머리 형상을 갖는 체결구의 냉간 단조 자동 공정 설계 시스템)

  • 김홍석;임용택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.141-148
    • /
    • 1994
  • In order to improve the productivity of cold forging at low production cost, an integrated system's approach is necessary in handling the material preparation and the optimum process design, considering the forming machines, tooling, and operation including quality control. As the first step toward this approach, an expert system for multi-stage cold forging process design for fasteners with various head geometries is developed using Prolog language on IBM 486 PC. For effective representation of the complex part geometries, the system uses the multiple element input, and the forward inference scheme in determination of the initial billet size and intermediate forging steps. In order to determine intermediate steps, the basic empirical rules for extrusion, heading, and trimming were applied. The required forming loads and global strain distributions at each forging step were calculated and displayed on the PC monitor. The designed process sequence drawing can be obtained by AutoCAD. The developed system will be useful in reducing trial and error of design engineers in determining the diameter and height of the initial cylindrical billet from the final product geometry and the intermediate necessary sequences.

  • PDF

Hybrid Method for Updating Geometry 3n Non-steady State Metal Forming Analysis by Rigid Plastic FEM (강소성 유한요소해석에 의한 비정상상태 금속성형 해석에서 형상 갱신을 위한 혼합법)

  • 최영;여홍태;허관도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.155-162
    • /
    • 2004
  • The volume of the metal is not changed for the plastic deformation. For metal forming simulation, rigid-plastic FEM codes are widely used. Updating geometry using Euler method in the simulation, the volume loss is occurred. In this paper, hybrid method is introduced to perform a more accurate simulation reducing computation time. In the proposed hybrid method, RK2 method is used for geometry updating at first time step and after the boundary condition of the node is changed. At the others, Adams-Bashforth or theta method is applied to update geometry. The results show that the simulations of upsetting and side-pressing can be performed within 0.02%.

Multi-stage Finite Element Inverse Analysis of elliptic Cup Drawing with large aspect ratio considering Intermediate Sliding Constraint Surface (중간 미끄럼 구속면을 고려한 세장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석)

  • 김세호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.21-25
    • /
    • 2000
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of expense and computation time For multi-stage sheet metal forming processes numerical analysis is expense difficult to carry out the to its complexities and convergence problem. It also requires lots of computation time. For the analysis of elliptic cup with large aspect ratio intermediate sliding constraint surfaces are difficult to describe. in this paper multi-stage finite element inverse analysis is applied to multi-stage elliptic cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. To describe intermediate sliding constraint surfaces an analytic scheme is introduced to deal with merged-arc type sliding surfaces.

  • PDF

Development of Automobile Windows Motor Cover by Thermoplastic Elastomer(TPE) (TPE를 적용한 자동차 윈도우 모터커버의 개발)

  • Cho, Young-Tae;Ko, Boum-Yong;Lee, Choong-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.847-851
    • /
    • 2010
  • It was attempted to develop an auto part by over molding injection mold that produces precision products in high productivity with use of an eco-friendly TPE substitute material for NBR. NBR is currently used in motor gear cover, one of the key parts in motor module for auto doors. Gear cover is composed of plastics and rubber mostly today, which requires a two (2) step process for production using two presses of different types. A hot press is used at this time for forming the rubber, which has drawback of requiring a rather long forming time of 400 seconds for one forming process. Even though this difficulty is overcome by reducing production time through employment of multi-cavity molds, time for forming process must be shortened for improvement of the productivity eventually, and the existing method of insert injection for products that have been formed with plastic material must be outgrown. In this point of view, over molding injection using TPE has a big advantage. Forming time is shortened to 54 seconds, and working the two (2) processes in series by one (1) press could solve the durability problem caused by deflection of the plastics, not to mention shortening the process time. Enhancement of productivity by almost 80% and improvement in the accuracy of the product could thus be achieved.