• Title/Summary/Keyword: Multi-stage rotating shaft

Search Result 6, Processing Time 0.018 seconds

Vibration Analysis of a Multi-Stage Rotating Shaft Shape (다단 회전축계 형상의 진동 연구)

  • Song, OhSeop;Park, Sangyun;Kang, Sunghwan;Seo, Jungseok;Kim, Sunhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.730-735
    • /
    • 2013
  • This paper contains various vibration analysis of multi-stage shaft shape such as the bending, torsional and axial vibration. The shaft system is modeled as Timoshenko beam with the transverse shear and rotary inertia effect and the equation of motion is derived by Hamilton's principle with considering clamped-free boundary condition. Then, eigenvalue problem of discrete equation of motion for multi-stage shaft model is solved and got results of the natural frequency through the numerical analysis. Obtained numerical analysis results through Matlab program were compared with those of FEM analysis to verify the results. This study suggests that design of shaft system be consider torsional and axial vibration as well as bending vibration.

  • PDF

A Study on the Development of Automatic Measuring System on the Alignment Offset of the Vertical Multistage Shaft (수직형 다단축의 축 정열 오프셋 자동 측정시스템 개발)

  • Park, H.C.;Kim, M.Y.;Lee, H.
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.922-928
    • /
    • 1998
  • This paper presents the automatic alignment measuring system for improving the accuracy and working time of alignment of large vertical hydraulic pump turbine. It is general practice that rotating shaft should run within acceptable vibration limit. In order to obtain better run-out data of multi-stage rotor, careful and accurate alignment approach must be established. Generally, present alignment procedure are required several iterative works and so many manpower. Therefore, the new system has been developed using a vector calculation algorithm, laser sensor and data acquisition devices. As a result of appling to actual machines, it is confirmed that manpower is saved up to an average 90%.

  • PDF

TURBO TYPE AIR COMPRESSOR DESIGN FOR LOW VIBRATION LEVEL (저진동을 위한 터보형 공기압축기의 설계)

  • Kim, Myeong-Kuk;Jung, Yong-Soo;Park, No-gill
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.159-165
    • /
    • 1998
  • Bearing design of turbo type geared centrifugal air compressor for low vibration level has been studied. The Transfer Matrix Method was used in this paper to analyze the air-compressor consisting of impellers, multi-stage geared rotors, and oil-film hearings. We have to consider this air-compressor as multi-geared rotating system, because characteristics of rotor-bearing system are different from conventional characteristics of non-rotating system. From the view point of Rotordynamics, the stiffness and damping coefficient of oil-film bearing in case of compressor system are more sensitive than other design parameters such as shaft length, shaft diameter and the weight of impellers, etc. Therefore, the stiffness and damping coefficients on each bearing were considered as design parameters. As the result of this study, turbo type air compressor with low vibration level can be achieved.

  • PDF

Turbine Alignment (I) : Case Study in th Electronic Power Plant Application (발전설비의 터빈 축정력 (I) : 발전소 적용 사례)

  • Hwang, Cheol-Ho;Kim, Jeong-Tae;Jun, Oh-Sung;Lee, Byung-Jun;Lee, Hyun
    • Journal of KSNVE
    • /
    • v.4 no.1
    • /
    • pp.23-31
    • /
    • 1994
  • When a shaft is misaligned, a high level of vibration is experienced. As a consequence, the system performance could be low with high level of noise generated. Even, a catastrophic damage of the rotating machinery may happen in the worst situation. The vibration caused by the shaft misalignment is not cured unless a correct alignment of the shaft is investigated. In this paper, a step by step approach for the turbine alignment has been demonstrated. It includes measurement tips of the coupling rim and face, calculation procedure of the bearing level, and the relevant values of the addition and subtration for shims in order to align the shaft level correctly. Then, as an application of the shaft alignment, the turbine system at the Pyung Tek focile electric power plant has been examined. Since the real system consists of high pressure, low pressure turbines and the generator, detailed alignment prolcedures of the multi stage shaft system has been demonstrated.

  • PDF

Dynamic Analysis of Floating Wave Energy Generation System with Mooring System (계류시스템을 가진 부유식 파력발전기의 동적거동 해석)

  • Choi, Gyu Seok;Sohn, Jeong Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.257-263
    • /
    • 2013
  • In this study, dynamic behaviors of a wave energy generation system (WEGS) that converts wave energy into electric energy are analyzed using multibody dynamics techniques. Many studies have focused on reducing the effects of a mooring system on the motion of a WEGS. Several kinematic constraints and force elements are employed in the modeling stage. Three-dimensional wave load equations are used to implement wave loads. The dynamic behaviors of a WEGS are analyzed under several wave conditions by using MSC/ADAMS, and the rotating speed of the generating shaft is investigated for predicting the electricity capacity. The dynamic behaviors of a WEGS with a mooring system are compared with those of a WEGS without a mooring system. Stability evaluation of a WEGS is carried out through simulation under extreme wave load.