• Title/Summary/Keyword: Multi-sensor network

Search Result 558, Processing Time 0.025 seconds

Data anomaly detection for structural health monitoring using a combination network of GANomaly and CNN

  • Liu, Gaoyang;Niu, Yanbo;Zhao, Weijian;Duan, Yuanfeng;Shu, Jiangpeng
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.53-62
    • /
    • 2022
  • The deployment of advanced structural health monitoring (SHM) systems in large-scale civil structures collects large amounts of data. Note that these data may contain multiple types of anomalies (e.g., missing, minor, outlier, etc.) caused by harsh environment, sensor faults, transfer omission and other factors. These anomalies seriously affect the evaluation of structural performance. Therefore, the effective analysis and mining of SHM data is an extremely important task. Inspired by the deep learning paradigm, this study develops a novel generative adversarial network (GAN) and convolutional neural network (CNN)-based data anomaly detection approach for SHM. The framework of the proposed approach includes three modules : (a) A three-channel input is established based on fast Fourier transform (FFT) and Gramian angular field (GAF) method; (b) A GANomaly is introduced and trained to extract features from normal samples alone for class-imbalanced problems; (c) Based on the output of GANomaly, a CNN is employed to distinguish the types of anomalies. In addition, a dataset-oriented method (i.e., multistage sampling) is adopted to obtain the optimal sampling ratios between all different samples. The proposed approach is tested with acceleration data from an SHM system of a long-span bridge. The results show that the proposed approach has a higher accuracy in detecting the multi-pattern anomalies of SHM data.

Study on Tactical Target Tracking Performance Using Unscented Transform-based Filtering (무향 변환 기반 필터링을 이용한 전술표적 추적 성능 연구)

  • Byun, Jaeuk;Jung, Hyoyoung;Lee, Saewoom;Kim, Gi-Sung;Kim, Kiseon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.96-107
    • /
    • 2014
  • Tracking the tactical object is a fundamental affair in network-equipped modern warfare. Geodetic coordinate system based on longitude, latitude, and height is suitable to represent the location of tactical objects considering multi platform data fusion. The motion of tactical object described as a dynamic model requires an appropriate filtering to overcome the system and measurement noise in acquiring information from multiple sensors. This paper introduces the filter suitable for multi-sensor data fusion and tactical object tracking, particularly the unscented transform(UT) and its detail. The UT in Unscented Kalman Filter(UKF) uses a few samples to estimate nonlinear-propagated statistic parameters, and UT has better performance and complexity than the conventional linearization method. We show the effects of UT-based filtering via simulation considering practical tactical object tracking scenario.

Object Detection and Localization on Map using Multiple Camera and Lidar Point Cloud

  • Pansipansi, Leonardo John;Jang, Minseok;Lee, Yonsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.422-424
    • /
    • 2021
  • In this paper, it leads the approach of fusing multiple RGB cameras for visual objects recognition based on deep learning with convolution neural network and 3D Light Detection and Ranging (LiDAR) to observe the environment and match into a 3D world in estimating the distance and position in a form of point cloud map. The goal of perception in multiple cameras are to extract the crucial static and dynamic objects around the autonomous vehicle, especially the blind spot which assists the AV to navigate according to the goal. Numerous cameras with object detection might tend slow-going the computer process in real-time. The computer vision convolution neural network algorithm to use for eradicating this problem use must suitable also to the capacity of the hardware. The localization of classified detected objects comes from the bases of a 3D point cloud environment. But first, the LiDAR point cloud data undergo parsing, and the used algorithm is based on the 3D Euclidean clustering method which gives an accurate on localizing the objects. We evaluated the method using our dataset that comes from VLP-16 and multiple cameras and the results show the completion of the method and multi-sensor fusion strategy.

  • PDF

Cluster-based Delay-adaptive Sensor Scheduling for Energy-saving in Wireless Sensor Networks (센서네트워크에서 클러스터기반의 에너지 효율형 센서 스케쥴링 연구)

  • Choi, Wook;Lee, Yong;Chung, Yoo-Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.3
    • /
    • pp.47-59
    • /
    • 2009
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting latency may vary depending on the type of applications, thus requiring application-specific algorithm and protocol design paradigms which help us to maximize energy conservation and thus the network lifetime. In this paper, we propose a novel delay-adaptive sensor scheduling scheme for energy-saving data gathering which is based on a two phase clustering (TPC). The ultimate goal is to extend the network lifetime by providing sensors with high adaptability to the application-dependent and time-varying delay requirements. The TPC requests sensors to construct two types of links: direct and relay links. The direct links are used for control and forwarding time critical sensed data. On the other hand, the relay links are used only for data forwarding based on the user delay constraints, thus allowing the sensors to opportunistically use the most energy-saving links and forming a multi-hop path. Simulation results demonstrate that cluster-based delay-adaptive data gathering strategy (CD-DGS) saves a significant amount of energy for dense sensor networks by adapting to the user delay constraints.

Performance Analysis of Face Image Recognition System Using A R T Model and Multi-layer perceptron (ART와 다층 퍼셉트론을 이용한 얼굴인식 시스템의 성능분석)

  • 김영일;안민옥
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.69-77
    • /
    • 1993
  • Automatic image recognition system is essential for a better man-to machine interaction. Because of the noise and deformation due to the sensor operation, it is not simple to build an image recognition system even for the fixed images. In this paper neural network which has been reported to be adequate for pattern recognition task is applied to the fixed and variational(rotation, size, position variation for the fixed image)recognition with a hope that the problems of conventional pattern recognition techniques are overcome. At fixed image recognition system. ART model is trained with face images obtained by camera. When recognizing an matching score. In the test when wigilance level 0.6 - 0.8 the system has achievel 100% correct face recognition rate. In the variational image recognition system, 65 invariant moment features sets are taken from thirteen persons. 39 data are taken to train multi-layer perceptron and other 26 data used for testing. The result shows 92.5% recognition rate.

  • PDF

Multiple Accelerometer Estimation System Based on Wireless Sensor Network (무선 센서네트워크에서 다중 가속도 측정 시스템)

  • Kim, Dong-Gook;Jung, In-Bum
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.517-520
    • /
    • 2005
  • 지금까지의 주변 환경 정보를 감지 및 분석하는 구조물 감시 시스템은 유선으로 구성되었다. 이러한 유선 시스템이 가지는 단점들을 해결하기 위해 무선 센서 네트워크를 이용한 연구들이 활발히 이루어지고 있다. 무선 센서 네트워크란 지역적으로 배치된 많은 수의 센싱 노드들 사이에서 데이터를 수집, 가공 및 무선으로 전송하는 하나의 네트워크이다. 본 연구에서는 센서 네트워크를 이용한 구조물 감시 시스템을 구현하고 성능을 측정하였다. 제안된 시스템에서의 가속도 측정 소프트웨어인 MultiHopAccel은 많은 센서 노드들 사이에서의 데이터 전송을 위한 멀티 홉 라우팅 기능과, 네트워크 내의 모든 노드들이 동일한 시간을 유지하기 위한 시간 동기화 기능을 제공한다. 본 연구에서는 MultiHopAccel을 통하여 센서 노드에 저장된 데이터들을 분석하고, 인터넷을 통하여 센서 노드들의 동작을 원격 감시 할 수 있음을 보인다.

  • PDF

Particle Filter Based Robust Multi-Human 3D Pose Estimation for Vehicle Safety Control (차량 안전 제어를 위한 파티클 필터 기반의 강건한 다중 인체 3차원 자세 추정)

  • Park, Joonsang;Park, Hyungwook
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.71-76
    • /
    • 2022
  • In autonomous driving cars, 3D pose estimation can be one of the effective methods to enhance safety control for OOP (Out of Position) passengers. There have been many studies on human pose estimation using a camera. Previous methods, however, have limitations in automotive applications. Due to unexplainable failures, CNN methods are unreliable, and other methods perform poorly. This paper proposes robust real-time multi-human 3D pose estimation architecture in vehicle using monocular RGB camera. Using particle filter, our approach integrates CNN 2D/3D pose measurements with available information in vehicle. Computer simulations were performed to confirm the accuracy and robustness of the proposed algorithm.

LSTM-based Early Fire Detection System using Small Amount Data

  • Seonhwa Kim;Kwangjae Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.110-116
    • /
    • 2024
  • Despite the continuous advancement of science and technology, fire accidents continue to occur without decreasing over time, so there is a constant need for a system that can accurately detect fires at an early stage. However, because most existing fire detection systems detect fire in the early stage of combustion when smoke is generated, rapid fire prevention actions may be delayed. Therefore we propose an early fire detection system that can perform early fire detection at a reasonable cost using LSTM, a deep learning model based on multi-gas sensors with high selectivity in the early stage of decomposition rather than the smoke generation stage. This system combines multiple gas sensors to achieve faster detection speeds than traditional sensors. In addition, through window sliding techniques and model light-weighting, the false alarm rate is low while maintaining the same high accuracy as existing deep learning. This shows that the proposed fire early detection system is a meaningful research in the disaster and engineering fields.

  • PDF

CMF-based Priority Processing Method for Multi-dimensional Data Skyline Query Processing in Sensor Networks (센서 네트워크에서 다차원 데이터 스카이라인 질의 처리를 위한 CMF 기반의 우선처리 기법)

  • Kim, Jin-Whan;Lee, Kwang-Mo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.7-18
    • /
    • 2012
  • It has been studied to support data having multiple properties, called Skyline Query. The skyline query is not exploring data having all properties but only meaningful data, when we retrieve informations in large data base. The skyline query can be used to provide some information about various environments and situations in sensor network. However, the legacy skyline query has a problem that increases the number of comparisons as the number of sensors are increasing in multi-dimensional data. Also important values are often omitted. Therefore, we propose a new method to reduce the complexity of comparison where the large number of sensors are placed. To reduce the complexity, we transfer a CMF(Category Based Member Function) which can identify preference of specific data when interest query from sync-node is transferred to sub-node. To show the validity of our method, we analyzed the performance by simulations. As a result, it showed that the time complexity was reduced when we retrieved information in multiple sensing data and omitted values are detected by great dominance Skyline.

A Study on Technology Trends and Researches for Ubiquitous Devices (유비쿼터스 디바이스 기술동향과 연구실태에 관한 조사)

  • Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.836-841
    • /
    • 2008
  • Ubiquitous computing represents the most explicit attempt yet to move computing technology beyond the confines of tool usage towards a pervasive penetration of everyday life. In this report, as a general introduction of Ubiquitous computing, a trend of Ubiquitous computing devices is proposed for the applied technology fields and our everyday life. We outline a broad analysis of this technology based on a close examination of the researches advancing it. After introducing a framework for understanding modem device technology, we develop an interpretation of ubiquitous computing concentrating on its guiding principles, technological infrastructure, and trends.

  • PDF