Abstract
It has been studied to support data having multiple properties, called Skyline Query. The skyline query is not exploring data having all properties but only meaningful data, when we retrieve informations in large data base. The skyline query can be used to provide some information about various environments and situations in sensor network. However, the legacy skyline query has a problem that increases the number of comparisons as the number of sensors are increasing in multi-dimensional data. Also important values are often omitted. Therefore, we propose a new method to reduce the complexity of comparison where the large number of sensors are placed. To reduce the complexity, we transfer a CMF(Category Based Member Function) which can identify preference of specific data when interest query from sync-node is transferred to sub-node. To show the validity of our method, we analyzed the performance by simulations. As a result, it showed that the time complexity was reduced when we retrieved information in multiple sensing data and omitted values are detected by great dominance Skyline.
데이터베이스 분야에서 다수의 속성을 갖는 데이터의 효율적인 의사 결정을 지원하는 스카이라인 질의에 관한 연구가 활발히 진행되고 있다. 스카이라인 질의란 대량의 데이터에서 필요한 관심 정보를 검색할 때 모든 속성의 데이터를 탐색하지 않고 속성 내에 의미 있는 데이터만 탐색하는 것이다. 이와 같은 스카이라인 질의는 센서 네트워크에서 다양한 환경 및 상황정보를 수집하여 사용자에게 제공하기 위해 유용하게 활용할 수 있다. 그러나 기존의 스카이라인 선출 방식은 다차원 데이터에서 스카이라인 선출시 센서의 수와 차원이 증가함에 따라 비교 계산 횟수가 급격히 증가하며 또한 지배력이 큰 값에 의해 단일 속성으로도 의미 있는 값이 제외될 수 있다. 따라서 본 논문에서는 싱크 노드로 부터 관심(interest) 질의를 하위 노드로 전송할 때 전체 데이터 중 일부 데이터들의 선호도(preference)를 판별할 수 있는 카테고리 기반 소속 함수(CMF : Category Based Member Function)를 함께 전송하여 스카이라인 선출 시 차원의 증가로 발생할 수 있는 비교 계산의 복잡성을 감소시키고 선호도 높은 우선순위 데이터를 처리하는 기법을 제안한다. 제안된 기법의 우수성을 보이기 위해 시뮬레이션을 통한 성능평가를 수행하였으며 그 결과 다차원의 센서 데이터 집합에서 데이터 검출 시 카테고리 기반 소속 함수를 기반으로 한 처리기법에서 시간 복잡도가 감소함을 보였으며 지배력이 큰 스카이라인으로부터 제외된 의미 있는 속성 값을 검출할 수 있었다.