• 제목/요약/키워드: Multi-sensor images

검색결과 179건 처리시간 0.021초

다중센서 영상 기반의 지상 표적 분류 알고리즘 (Ground Target Classification Algorithm based on Multi-Sensor Images)

  • 이은영;구은혜;이희열;조웅호;박길흠
    • 한국멀티미디어학회논문지
    • /
    • 제15권2호
    • /
    • pp.195-203
    • /
    • 2012
  • 본 논문은 다중센서 영상을 이용한 결정 융합 기반의 지상 표적 분류 알고리즘 및 특징 추출 기법을 제안한다. 표적의 인식률 향상을 위하여 가중 투표 방법을 적용함으로써 개별 분류기로부터 획득된 결과를 융합하였다. 또한 개별 센서 영상 내에 속한 표적을 분류하기 위해 CCD 영상으로부터 획득한 CM 영상의 밝기 차이와 FLIR 영상 내 표적의 윤곽선 정보 및 차량과 포탑의 너비 비율을 이용하여 스케일과 회전변화에 강인한 특징들을 추출하였다. 마지막으로 실험을 통하여 본 논문에서 제안한 지상 표적 분류 알고리즘과 특징 추출 기법에 대한 성능을 검증한다.

KOMPSAT-3·3A 위성영상 글로벌 융합활용을 위한 다중센서 위성영상과의 정밀영상정합 (Fine-image Registration between Multi-sensor Satellite Images for Global Fusion Application of KOMPSAT-3·3A Imagery)

  • 김태헌;윤예린;이창희;한유경
    • 대한원격탐사학회지
    • /
    • 제38권6_4호
    • /
    • pp.1901-1910
    • /
    • 2022
  • 뉴스페이스(new space) 시대가 도래함에 따라 국내 KOMPSAT-3·3A 위성영상과 해외 위성영상과의 글로벌 융합활용 기술확보가 대두되고 있다. 일반적으로 다중센서 위성영상은 취득 당시의 다양한 외부요소로 인해 영상 간 상대적인 기하오차(relative geometric error)가 발생하며, 이로 인해 위성영상 산출물의 품질이 저하된다. 따라서 본 연구에서는 KOMPSAT-3·3A 위성영상과 해외 위성영상 간 존재하는 상대기하오차를 최소화하기 위한 정밀영상정합(fine-image registration) 방법론을 제안한다. KOMPSAT-3·3A 위성영상과 해외 위성영상 간 중첩영역을 선정한 후 두 영상 간 공간해상도를 통일한다. 이어서, 특징 및 영역 기반 정합기법을 결합한 형태의 하이브리드(hybrid) 정합기법을 이용하여 정합점(tie-point)을 추출한다. 그리고 피라미드(pyramid) 영상 기반의 반복적 정합을 수행하여 정밀영상정합을 수행한다. KOMPSAT-3·3A 위성영상과 Sentinel-2A 및 PlanetScope 영상을 이용하여 제안기법의 정확도 및 성능을 평가하였다. 그 결과, Sentienl-2A 영상 기준 평균 Root Mean Square Error (RMSE) 1.2 pixels, PlanetScope 영상 기준 평균 RMSE 3.59 pixels의 정확도가 도출되었다. 이를 통해 제안기법을 이용하여 효과적으로 정밀영상정합을 수행할 수 있을 것으로 사료된다.

On Addressing Network Synchronization in Object Tracking with Multi-modal Sensors

  • Jung, Sang-Kil;Lee, Jin-Seok;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권4호
    • /
    • pp.344-365
    • /
    • 2009
  • The performance of a tracking system is greatly increased if multiple types of sensors are combined to achieve the objective of the tracking instead of relying on single type of sensor. To conduct the multi-modal tracking, we have previously developed a multi-modal sensor-based tracking model where acoustic sensors mainly track the objects and visual sensors compensate the tracking errors [1]. In this paper, we find a network synchronization problem appearing in the developed tracking system. The problem is caused by the different location and traffic characteristics of multi-modal sensors and non-synchronized arrival of the captured sensor data at a processing server. To effectively deliver the sensor data, we propose a time-based packet aggregation algorithm where the acoustic sensor data are aggregated based on the sampling time and sent to the server. The delivered acoustic sensor data is then compensated by visual images to correct the tracking errors and such a compensation process improves the tracking accuracy in ideal case. However, in real situations, the tracking improvement from visual compensation can be severely degraded due to the aforementioned network synchronization problem, the impact of which is analyzed by simulations in this paper. To resolve the network synchronization problem, we differentiate the service level of sensor traffic based on Weight Round Robin (WRR) scheduling at the routers. The weighting factor allocated to each queue is calculated by a proposed Delay-based Weight Allocation (DWA) algorithm. From the simulations, we show the traffic differentiation model can mitigate the non-synchronization of sensor data. Finally, we analyze expected traffic behaviors of the tracking system in terms of acoustic sampling interval and visual image size.

Emotion Recognition using Short-Term Multi-Physiological Signals

  • Kang, Tae-Koo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.1076-1094
    • /
    • 2022
  • Technology for emotion recognition is an essential part of human personality analysis. To define human personality characteristics, the existing method used the survey method. However, there are many cases where communication cannot make without considering emotions. Hence, emotional recognition technology is an essential element for communication but has also been adopted in many other fields. A person's emotions are revealed in various ways, typically including facial, speech, and biometric responses. Therefore, various methods can recognize emotions, e.g., images, voice signals, and physiological signals. Physiological signals are measured with biological sensors and analyzed to identify emotions. This study employed two sensor types. First, the existing method, the binary arousal-valence method, was subdivided into four levels to classify emotions in more detail. Then, based on the current techniques classified as High/Low, the model was further subdivided into multi-levels. Finally, signal characteristics were extracted using a 1-D Convolution Neural Network (CNN) and classified sixteen feelings. Although CNN was used to learn images in 2D, sensor data in 1D was used as the input in this paper. Finally, the proposed emotional recognition system was evaluated by measuring actual sensors.

다목적실용위성2호 기하검보정 및 초기결과 분석 (KOMPSAT-2 Geometric Cal/Val Overview and Preliminary Result Analysis)

  • 서두천;이동한;송정헌;박수영;임효숙
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2007년도 춘계학술발표회 논문집
    • /
    • pp.145-148
    • /
    • 2007
  • The Korea Multi-Purpose Satellite-2 (KOMPSAT-2) was launched in July 2006 and The main mission of the KOMPSAT-2 is a high resolution imaging for the cartography of Korea peninsula by utilizing Multi Spectral Camera (MSC) images. The camera resolutions are 1 m in panchromatic scene and 4 m in multi-spectral imaging. KOMPSAT-2 measure the position, velocity and attitude data of satellite using by star sensor, gyro sensor, and GPS sensor. This paper provides an initial geometric accuracy assessment of the KOMPSAT-2 high resolution image, both geometric Cal/Val overview.

  • PDF

Development of New Photogrammetric Software for High Quality Geo-Products and Its Performance Assessment

  • Jeong, Jae-Hoon;Lee, Tae-Yoon;Rhee, Soo-Ahm;Kim, Hyeon;Kim, Tae-Jung
    • 대한원격탐사학회지
    • /
    • 제28권3호
    • /
    • pp.319-327
    • /
    • 2012
  • In this paper, we introduce a newly developed photogrammetric software for automatic generation of high quality geo-products and its performance assessment carried out using various satellite images. Our newly developed software provides the latest techniques of an optimized sensor modelling, ortho-image generation and automated Digital Elevation Model (DEM) generation for diverse remote sensing images. In particular, images from dual- and multi-sensor images can be integrated for 3D mapping. This can be a novel innovation toward a wider applicability of remote sensing data, since 3D mapping has been limited within only single-sensor so far. We used Kompsat-2, Ikonos, QuickBird, Spot-5 high resolution satellite images to test an accuracy of 3D points and ortho-image generated by the software. Outputs were assessed by comparing reliable reference data. From various sensor combinations 3D mapping were implemented and their accuracy was evaluated using independent check points. Model accuracy of 1~2 pixels or better was achieved regardless of sensor combination type. The high resolution ortho-image results are consistent with the reference map on a scale of 1:5,000 after being rectified by the software and an accuracy of 1~2 pixels could be achieved through quantitative assessment. The developed software offers efficient critical geo-processing modules of various remote sensing images and it is expected that the software can be widely used to meet the demand on the high-quality geo products.

소형 다중분광 항공촬영 시스템(PKNU 3호) 개발에 관한 연구 (Research for development of small format multi -spectral aerial photographing systems (PKNU 3))

  • 이은경;최철웅;서영찬;조남춘
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 추계학술발표회 논문집
    • /
    • pp.143-152
    • /
    • 2004
  • Researchers seeking geological and environmental information, depend on remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, adverse weather conditions as well as equipment expense limit the ability to collect data anywhere and anytime. To allow for better flexibility in geological and environmental data collection, we have developed a compact, multi-spectral automatic Aerial Photographic system (PKNU2). This system's Multi-spectral camera can record visible (RGB) and infrared (NIR) band (3032*2008 Pixels) images Visible and infrared band images were obtained from each camera respectively and produced color-infrared composite images to be analyzed for the purpose of the environmental monitoring. However this did not provide quality data. Furthermore, it has the disadvantage of having the stereoscopic overlap area being 60% unsatisfied due to the 12 seconds of storage time of each data The PKNU2 system in contrast, photographed photos of great capacity Thus, with such results, we have been proceeding to develop the advanced PKNU2 (PKNU3) system that consists of a color-infrared spectral camera that can photograph in the visible and near-infrared bands simultaneously using a single sensor, a thermal infrared camera, two 40G computers to store images, and an MPEG board that can compress and transfer data to the computer in real time as well as be able to be mounted onto a helicopter platform.

  • PDF

정규 상호정보와 기울기 방향 정보를 이용한 다중센서 영상 정합 알고리즘 (Multi-sensor Image Registration Using Normalized Mutual Information and Gradient Orientation)

  • 주재용;김민재;구본화;고한석
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.37-48
    • /
    • 2012
  • 영상정합은 동일한 장면에 대해서 서로 다른 시점, 서로 다른 시간 혹은 서로 다른 특성의 센서로부터 얻은 영상들의 위치 관계를 대응 시켜주는 기법이다. 본 논문에서는 가시광선 영상 및 적외선 영상과 같은 다중센서 영상을 정합하기 위한 방법을 제안한다. 영상정합은 두 영상에서 특징점을 추출하고, 특징점 간의 대응 관계를 구함으로써 이루어진다. 기존의 다중센서 영상 정합을 위한 방법으로 정규상호정보를 이용하여 대응 특징점을 선별하는 방법이 제안되었다. 정규상호정보 기반의 영상정합 기법은 두 영상의 통계적 상관성이 전역적이어야 한다는 가정을 전제한다. 그러나 가시광선 영상과 적외선 영상에서는 이를 보장하지 못하는 경우가 많아 대응 특징점의 정확도가 저하되기 때문에 기존의 방법은 안정적인 정합 성능을 기대하기 힘들다. 본 논문에서는 영상의 공간정보로서 기울기 방향정보를 정규상호정보와 결합함으로써, 대응 특징점의 정확도를 향상시켰으며 이를 통해 정확성 및 안정적인 영상 정합 결과를 도모하였다. 다양한 실험 결과를 통해 제안하는 방법의 효용성을 증명하였다.

다중 해상도 영상 등록을 위한 가변 원형 템플릿을 이용한 특징 정합 (Feature Matching using Variable Circular Template for Multi-resolution Image Registration)

  • 예철수
    • 대한원격탐사학회지
    • /
    • 제34권6_3호
    • /
    • pp.1351-1367
    • /
    • 2018
  • 다중 센서 영상을 영상 융합, 변화 탐지, 시계열 분석에 활용하기 위해서는 두 영상 간의 영상 등록 과정이 필수적이다. 영상 등록을 위해서는 서로 다른 공간 해상도를 가지는 다중 센서 영상 사이의 스케일과 회전각도 차이를 정확히 검출해야 한다. 본 논문에서는 다중 해상도 영상 간의 영상 등록을 위하여 가변 원형 템플릿을 이용한 새로운 특징 정합 기법을 제안한다. 제안하는 정합 기법은 스케일이 작은 영상의 특징점을 중심으로 원형 템플릿을 설정하고 스케일이 큰 영상에서는 가변 원형 템플릿을 생성한다. 가변 원형 템플릿의 스케일을 일정한 스케일 단위로 변경한 후에 가변 원형 템플릿을 일정 각도 단위로 회전시키면서 두 원형 템플릿 사이의 상호 정보량이 최대가 될 때의 가변 원형 템플릿의 스케일, 회전 각도 그리고 중심 위치를 각각 검출한다. 제안한 방법을 서로 다른 공간 해상도를 가지는 Kompsat(Korea Multi-Purpose Satellite) 2호, 3호, 3A호 영상 조합에 적용한 결과, 스케일 팩터 오차는 0.004 이하, 회전 각도 오차는 $0.3^{\circ}$ 이하, 제어점의 위치 오차는 1 화소 이하의 정합 성능을 보였다.

KOMPSAT-3 영상의 기하정확도 분석 (Analysis of Geolocation Accuracy of KOMPSAT-3 Imagery)

  • 정재훈;김재인;김태정
    • 대한원격탐사학회지
    • /
    • 제30권1호
    • /
    • pp.37-45
    • /
    • 2014
  • 본 논문에서는 다목적실용위성 3호(KOMPSAT-3) 영상의 기하정확도에 대해 보고한다. KOMPSAT 3호는 2012년 5월 18일 성공적으로 발사되어 지난 3월부터 상용 보급되기 시작하였다. 본 논문에서는 동일 지역을 촬영한 4장의 KOMPSAT-3 영상을 이용하여 초기센서모델, 정밀센서모델, 스테레오 및 다중영상모델의 위치 정확도 평가를 수행하였다. KOMPSAT-3 단일영상은 기준점 없이 30 m 내외의 위치 정확도를 제공하며, 기준점으로부터 정밀 기하 보정된 KOMPSAT-3 영상은 1 m 또는 그 이내의 위치정확도를 제공하는 것이 확인되었다. 또한 KOMPSAT-3 스테레오 영상 및 다중 영상으로부터 취득한 3차원 위치 좌표는 서브미터급 수평 수직 정확도를 보여주었다. 전반적으로 KOMPSAT-3 영상은 KOMPSAT-2 영상에 비해 훨씬 개선된 기하학적 성능을 보여주며 향후 정밀 위치정보 취득을 위해 서브미터급 국외 위성자료를 대체할 수 있을 것으로 기대된다.