• Title/Summary/Keyword: Multi-sensor images

Search Result 179, Processing Time 0.027 seconds

Estimation of the Potato Growth Information Using Multi-Spectral Image Sensor (멀티 스펙트럴 이미지 센서를 이용한 감자의 생육정보 예측)

  • Kang, Tae-Hwann;Noguchi, Noboru
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.180-186
    • /
    • 2011
  • The objective of this research was to establish the estimation method of growth information on potato using Multi-Spectral Image Sensor (MSIS) and Global Positioning System (GPS). And growth estimation map for determining a prescription map over the entire field was generated. To determine the growth model, 10 ground-truth points of areas of $4m^2$ each were selected and investigated. The growth information included stem number, crop height and SPAD value. In addition, images information involving the ground-truth points were also taken by an unmanned helicopter, and reflectance value of Green, Red, and NIR bands were calculated with image processing. Then, growth status of potato was modeled by multi-regression analysis using these reflectance value of Green, Red, and NIR. As a result, potato growth information could be detected by analyzing Green, Red, and NIR images. Stem number, crop height and SPAD value could be estimated with $R^2$ values of 0.600, 0.657 and 0.747 respectively. The generated GIS map would describe variability of the potato growth in a whole field.

Bi-directional Reflectance Effects on Mangrove Classification of IKONOS Multi-angular Images

  • Rubio, M.C.D.;Nadaoka, K.;Paringit, E.C.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.4-6
    • /
    • 2003
  • Optical signals from an object may vary at different conditions caused by differences in light source and sensor position. Knowledge of these variations is necessary to enable calibration of the satellite images and confirmation of the sun and sensor angles influences of the spectral signals from the objects. With the use high -resolution Ikonos$^{TM}$ multi-angular images, the bi- directional reflectance effects of mangrove trees were observed when three datasets were compared. The influence of bi- directional reflectance may affect the accuracy of interpreting satellite imagery and obtaining biophysical parameters mangrove and other vegetation by indirect means.

  • PDF

Land cover classification of a non-accessible area using multi-sensor images and GIS data (다중센서와 GIS 자료를 이용한 접근불능지역의 토지피복 분류)

  • Kim, Yong-Min;Park, Wan-Yong;Eo, Yang-Dam;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.493-504
    • /
    • 2010
  • This study proposes a classification method based on an automated training extraction procedure that may be used with very high resolution (VHR) images of non-accessible areas. The proposed method overcomes the problem of scale difference between VHR images and geographic information system (GIS) data through filtering and use of a Landsat image. In order to automate maximum likelihood classification (MLC), GIS data were used as an input to the MLC of a Landsat image, and a binary edge and a normalized difference vegetation index (NDVI) were used to increase the purity of the training samples. We identified the thresholds of an NDVI and binary edge appropriate to obtain pure samples of each class. The proposed method was then applied to QuickBird and SPOT-5 images. In order to validate the method, visual interpretation and quantitative assessment of the results were compared with products of a manual method. The results showed that the proposed method could classify VHR images and efficiently update GIS data.

A study on matching correlation analysis of multi-scale satellite images data for change detection (변화추출을 위한 다중영상자료의 정합상관도 분석을 위한 연구)

  • 이성순;윤희천;강준묵
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.221-226
    • /
    • 2004
  • For comparing more than two images, the precise geometric corrections should be preceded because it necessary to eliminate systematic errors due to basic sensor information difference and non-systematic errors due to topographical undulations. In this study, we did sensor modeling using satellite sensor information to make a basic map of change detection for artificial topography. We eliminated the systematic errors which can be occurred in photographing conditions using GCP and DEM data. The Kompsat EOC images relief could be reduced by precise rectification method. Classifying images which was used for change detections by city and forest zone, the accuracy of the matching results are increased by 10% and the positioning accuracies also increased.

  • PDF

Multiple Color and ToF Camera System for 3D Contents Generation

  • Ho, Yo-Sung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.175-182
    • /
    • 2017
  • In this paper, we present a multi-depth generation method using a time-of-flight (ToF) fusion camera system. Multi-view color cameras in the parallel type and ToF depth sensors are used for 3D scene capturing. Although each ToF depth sensor can measure the depth information of the scene in real-time, it has several problems to overcome. Therefore, after we capture low-resolution depth images by ToF depth sensors, we perform a post-processing to solve the problems. Then, the depth information of the depth sensor is warped to color image positions and used as initial disparity values. In addition, the warped depth data is used to generate a depth-discontinuity map for efficient stereo matching. By applying the stereo matching using belief propagation with the depth-discontinuity map and the initial disparity information, we have obtained more accurate and stable multi-view disparity maps in reduced time.

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Development of Radar-Based Multi-Sensor Quantitative Precipitation Estimation Technique (레이더기반 다중센서활용 강수추정기술의 개발)

  • Lee, Jae-Kyoung;Kim, Ji-Hyeon;Park, Hye-Sook;Suk, Mi-Kyung
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.433-444
    • /
    • 2014
  • Although the Radar-AWS Rainrate (RAR) calculation system operated by Korea Meteorological Administration estimated precipitation using 2-dimensional composite components of single polarization radars, this system has several limitations in estimating the precipitation accurately. To to overcome limitations of the RAR system, the Korea Meteorological Administration developed and operated the RMQ (Radar-based Multi-sensor Quantitative Precipitation Estimation) system, the improved version of NMQ (National Mosaic and Multi-sensor Quantitative Precipitation Estimation) system of NSSL (National Severe Storms Laboratory) for the Korean Peninsula. This study introduced the RMQ system domestically for the first time and verified the precipitation estimation performance of the RMQ system. The RMQ system consists of 4 main parts as the process of handling the single radar data, merging 3D reflectivity, QPE, and displaying result images. The first process (handling of the single radar data) has the pre-process of a radar data (transformation of data format and quality control), the production of a vertical profile of reflectivity and the correction of bright-band, and the conduction of hydrid scan reflectivity. The next process (merger of 3D reflectivity) produces the 3D composite reflectivity field after correcting the quality controlled single radar reflectivity. The QPE process classifies the precipitation types using multi-sensor information and estimates quantitative precipitation using several Z-R relationships which are proper for precipitation types. This process also corrects the precipitation using the AWS position with local gauge correction technique. The last process displays the final results transformed into images in the web-site. This study also estimated the accuracy of the RMQ system with five events in 2012 summer season and compared the results of the RAR (Radar-AWS Rainrate) and RMQ systems. The RMQ system ($2.36mm\;hr^{-1}$ in RMSE on average) is superior to the RAR system ($8.33mm\;hr^{-1}$ in RMSE) and improved by 73.25% in RMSE and 25.56% in correlation coefficient on average. The precipitation composite field images produced by the RMQ system are almost identical to the AWS (Automatic Weather Statioin) images. Therefore, the RMQ system has contributed to improve the accuracy of precipitation estimation using weather radars and operation of the RMQ system in the work field in future enables to cope with the extreme weather conditions actively.

RPC-based epipolar image resampling of Kompsat-2 across-track stereos (RPC를 기반으로 한 아리랑 2호 에피폴라 영상제작)

  • Oh, Jae-Hong;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.157-164
    • /
    • 2011
  • As high-resolution satellite images have enabled large scale topographic mapping and monitoring on global scale with short revisit time, agile sensor orientation, and large swath width, many countries make effort to secure the satellite image information. In Korea, KOMPSAT-2 (KOrea Multi-Purpose SATellite-2) was launched in July 28 2006 with high specification. These satellites have stereo image acquisition capability for 3D mapping and monitoring. To efficiently handle stereo images such as stereo display and monitoring, the accurate epipolar image generation process is prerequisite. However, the process was highly limited due to complexity in epipolar geometry of pushbroom sensor. Recently, the piecewise approach to generate epipolar images using RPC was developed and tested for in-track IKONOS stereo images. In this paper, the piecewise approach was tested for KOMPSAT-2 across-track stereo images to see how accurately KOMPSAT-2 epipolar images can be generated for 3D geospatial applications. In the experiment, two across-track stereo sets from three KOMPSAT-2 images of different dates were tested using RPC as the sensor model. The test results showed that one-pixel level of y-parallax was achieved for manually measured tie points.

Development of a Portable Multi-sensor System for Geo-referenced Images and its Accuracy Evaluation (Geo-referenced 영상 획득을 위한 휴대용 멀티센서 시스템 구축 및 정확도 평가)

  • Lee, Ji-Hun;Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.637-643
    • /
    • 2010
  • In this study, we developed a Portable Multi-sensor System, which consists of a video camera, a GPS/MEMS IMU and a UMPC to acquire video images and position/attitude data. We performed image georeferencing based on the bundle adjustment without ground control points using the acquired data and then evaluated the effectiveness of our system through the accuracy verification. The experimental results showed that the RMSE of relative coordinates on the ground point coordinates obtained from our system was several centimeters. Our system can be efficiently utilized to obtain the 3D model of object and their relative coordinates. In future, we plan to improve the accuracy of absolute coordinates through the rigorous calibration of the system and camera.

Registration Method between High Resolution Optical and SAR Images (고해상도 광학영상과 SAR 영상 간 정합 기법)

  • Jeon, Hyeongju;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.739-747
    • /
    • 2018
  • Integration analysis of multi-sensor satellite images is becoming increasingly important. The first step in integration analysis is image registration between multi-sensor. SIFT (Scale Invariant Feature Transform) is a representative image registration method. However, optical image and SAR (Synthetic Aperture Radar) images are different from sensor attitude and radiation characteristics during acquisition, making it difficult to apply the conventional method, such as SIFT, because the radiometric characteristics between images are nonlinear. To overcome this limitation, we proposed a modified method that combines the SAR-SIFT method and shape descriptor vector DLSS(Dense Local Self-Similarity). We conducted an experiment using two pairs of Cosmo-SkyMed and KOMPSAT-2 images collected over Daejeon, Korea, an area with a high density of buildings. The proposed method extracted the correct matching points when compared to conventional methods, such as SIFT and SAR-SIFT. The method also gave quantitatively reasonable results for RMSE of 1.66m and 2.45m over the two pairs of images.