• Title/Summary/Keyword: Multi-sensing System

Search Result 414, Processing Time 0.028 seconds

GROUND RECEIVING SYSTEM FOR KOMPSAT-2

  • Kim, Moon-Gyu;Kim, Tae-Jung;Park, Sung-Og;Im, Yong-Jo;Shin, Ji-Hyun;Choi, Myung-Jin;Park, Seung-Ran;Lee, Jong-Ju
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.804-809
    • /
    • 2002
  • Remote sensing division of satellite technology research center (SaTReC), Korea advanced institute of science and technology (KAIST) has developed a ground receiving and processing system for high resolution satellite images. Developed system will be adapted and operated to receive, process and distributes images acquired from of the second Korean Multi-purpose Satellite (KOMPSAT-2), which will be launched in 2004. This project had initiated to develop and Koreanize the state-of-the-art technologies related to the ground receiving system fur high resolution remote sensing images, which range from direct ingestion of image data to the distribution of products through precise image correction. During four years development, the system has been verified in various ways including real operation of custom-made systems such as a prototype system for SPOT and a commercialised system for KOMPSAT-1. Currently the system is under customisation for installation at KOMPSAT-2 ground station. In this paper, we present accomplished work and future work.

  • PDF

Fiber-optic humidity sensor system for the monitoring and detection of coolant leakage in nuclear power plants

  • Kim, Hye Jin;Shin, Hyun Young;Pyeon, Cheol Ho;Kim, Sin;Lee, Bongsoo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1689-1696
    • /
    • 2020
  • In this study, we developed a fiber-optic humidity sensor (FOHS) system for the monitoring and detection of coolant leakage in nuclear power plants. The FOHS system includes an FOHS, a spectrometer, a halogen white-light source, and a Y-coupler. The FOHS is composed of a humidity-sensing material, a metal tube, a multi-mode plastic optical fiber, and a subminiature version A (SMA) fiber-optic connector. The humidity-sensing material is synthesized from a mixture of polyvinylidene fluoride (PVDF) in dimethyl sulfoxide (DMSO) and hydroxyethyl cellulose (HEC) in distilled water. We measured the optical intensity of the light signals reflected from the FOHS placed inside the humidity chamber with relative humidity (RH) variation from 40 to 95%. We found that the optical intensity of the sensing probe increased linearly with the RH. The reversibility and reproducibility of the FOHS were also evaluated.

Simultaneous Localization and Mobile Robot Navigation using a Sensor Network

  • Jin Tae-Seok;Bashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.161-166
    • /
    • 2006
  • Localization of mobile agent within a sensing network is a fundamental requirement for many applications, using networked navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, This paper describes a networked sensor-based navigation method in an indoor environment for an autonomous mobile robot which can navigate and avoid obstacle. In this method, the self-localization of the robot is done with a model-based vision system using networked sensors, and nonstop navigation is realized by a Kalman filter-based STSF(Space and Time Sensor Fusion) method. Stationary obstacles and moving obstacles are avoided with networked sensor data such as CCD camera and sonar ring. We will report on experiments in a hallway using the Pioneer-DX robot. In addition to that, the localization has inevitable uncertainties in the features and in the robot position estimation. Kalman filter scheme is used for the estimation of the mobile robot localization. And Extensive experiments with a robot and a sensor network confirm the validity of the approach.

Force monitoring of steel cables using vision-based sensing technology: methodology and experimental verification

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.585-599
    • /
    • 2016
  • Steel cables serve as the key structural components in long-span bridges, and the force state of the steel cable is deemed to be one of the most important determinant factors representing the safety condition of bridge structures. The disadvantages of traditional cable force measurement methods have been envisaged and development of an effective alternative is still desired. In the last decade, the vision-based sensing technology has been rapidly developed and broadly applied in the field of structural health monitoring (SHM). With the aid of vision-based multi-point structural displacement measurement method, monitoring of the tensile force of the steel cable can be realized. In this paper, a novel cable force monitoring system integrated with a multi-point pattern matching algorithm is developed. The feasibility and accuracy of the developed vision-based force monitoring system has been validated by conducting the uniaxial tensile tests of steel bars, steel wire ropes, and parallel strand cables on a universal testing machine (UTM) as well as a series of moving loading experiments on a scale arch bridge model. The comparative study of the experimental outcomes indicates that the results obtained by the vision-based system are consistent with those measured by the traditional method for cable force measurement.

Imaging Mode Design and Performance Characteristics of the X-band Small SAR Satellite System

  • Kwag, Young-Kil
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.2
    • /
    • pp.157-175
    • /
    • 2000
  • A synthetic aperture radar (SAR) system is able to provide all-weather, day-and- night superior imaging capability of the earth surface, and thus is extremely useful in surveillance for both civil and military applications. In this paper, the X-band high resolution spaceborne SAR system design is demonstrated with the key design performance for a given mission and system requirements characterized by the small satellite system. The SAR multi-mode imaging technique is presented with a critical parameter assessment, and the standard mode results are analyzed in terms of the image quality performances. In line with the system requirement X-band SAR payload and ground reception/processing subsystems are designed and the major design results are presented with the key performance characteristics. This small satellite SAR system shows the wide range of imaging capability with high resolution, and proves to be an effective surveillance systems in the light weight, high performance and cost-effective points of view.

Multi-Description Image Compression Coding Algorithm Based on Depth Learning

  • Yong Zhang;Guoteng Hui;Lei Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.2
    • /
    • pp.232-239
    • /
    • 2023
  • Aiming at the poor compression quality of traditional image compression coding (ICC) algorithm, a multi-description ICC algorithm based on depth learning is put forward in this study. In this study, first an image compression algorithm was designed based on multi-description coding theory. Image compression samples were collected, and the measurement matrix was calculated. Then, it processed the multi-description ICC sample set by using the convolutional self-coding neural system in depth learning. Compressing the wavelet coefficients after coding and synthesizing the multi-description image band sparse matrix obtained the multi-description ICC sequence. Averaging the multi-description image coding data in accordance with the effective single point's position could finally realize the compression coding of multi-description images. According to experimental results, the designed algorithm consumes less time for image compression, and exhibits better image compression quality and better image reconstruction effect.

Status of Korean Research Activity on Arctic Sea Ice Monitoring using KOMPSAT-series Satellite

  • Kim, Hyun-cheol;Chae, Tae-Byeong
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.329-339
    • /
    • 2019
  • Arctic warming is a global issue. The sea ice in the Arctic plays a crucial role in the climate system. We thought that a recent abnormality in many countries in the northern hemisphere could be related to the effects of shrinking sea ice in the Arctic. Many research groups monitor sea ice in the Arctic for climate research. Satellite remote sensing is an integral part of Arctic sea ice research due to the Arctic's large size, making it difficult to observe with general research equipment, and its extreme environment that is difficult for humans to access. Along with monitoring recent weather changes, Korea scientists are conducting polar remote sensing using a Korean satellite series to actively cope with environmental changes in the Arctic. The Korean satellite series is known as KOMPSAT (Korea Multi-Purpose Satellite, Korean name is Arirang) series, and it carries optical and imaging radar. Since the organization of the Satellite Remote Sensing and Cryosphere Information Center in Korea in 2016, Korean research on and monitoring of Arctic sea ice has accelerated rapidly. Moreover, a community of researchers studying Arctic sea ice by satellite remote sensing increased in Korea. In this article, we review advances in Korea's remote sensing research for the polar cryosphere over the last several years. In addition to satellite remote sensing, interdisciplinary studies are needed to resolve the current limitations on research on climate change.

NDIR Multi-Gas Measurement System for Air Quality based on Wireless Sensor Network (무선센서네트워크 기반 공기질 측정을 위한 비분산적외선 복합가스측정시스템)

  • Paik, Seung Hyun;Lee, Jun Yeong;Jung, Sang Woo;Park, Hong Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.299-304
    • /
    • 2016
  • As public interest in air quality and environment problem is increasing, many researches are being carried out the gas measurement system. Especially, Non-dispersive infrared (NDIR) measurements using Beer-Lambert gas sensing principle with very high selectivity and long life time are noted for reliable method. It is possible to detect various gases such as carbon dioxide (CO2), carbon monoxide (CO), and nitrogen dioxide (NO2), but many researches are mostly concentrated on CO2 sensor. The multi-gas measuring instrument is high price and unwieldy, therefore it is not suitable for wide area required numerous instrument. So we study the NDIR multi-gas measurement system for air quality based on wireless sensor network, and experiment the realized measurement system.

Multi-path simulation for satellite-based positioning systems using 3D digital map of urban area

  • Hakamata, Tomohiro;Suh, Yong-Cheol;Konishi, Yusuke;Shibasaki, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1015-1017
    • /
    • 2003
  • Recently, DGPS or RTK-GPS techniques enable us to use satellite based positioning systems with high accuracy. But in urban area, navigation systems suffer from problems such as signal blockage by high-rise buildings, multi-path problems, and so on. So we have to know numbers of visible satellites and quality of signals received at the ground level in urban area as accurate as possible. In this paper, we developed a simulation system called LoQAS [Location service Quality Assessment System, 2002, the University of Tokyo] which can simulate numbers of visible satellites and DOP values using accurate satellite orbital data and 3-D digital map. In this time, we evaluated this system and extended it to deal with reflected signals to assess multi-path problems.

  • PDF

Simulation System for Earthmoving Operation with Traffic Flow

  • Kyoungmin Kim;Kyong Ju Kim;Hyeon Jeong Cho;Sang Kyu Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1359-1363
    • /
    • 2009
  • The object of this research is to develop a simulation system for earthmoving operations in consideration of the impact of congestion in-between equipment and existing traffic flow around the site. The congestion in-between equipment and traffic flow affect work productivity. The conventional discrete event simulation, however, has limitations in simulating the flow of construction equipment. To consider the impact of congestion in-between equipment and existing traffic flow, in this paper, a multi-agent based simulation model that can realize characteristics of truck behavior more accurately to consider the impact of congestion was proposed. In this simulation model, multiple agents can identify environmental changes and adapt themselves to the new environment. This modeling approach is a better choice for this problem since it describes behavioral characteristics of each agent by sensing changes in dynamic surroundings. This study suggests a detailed system design of the multi-agent based simulation system.

  • PDF